

Technical Excellence Practical Experience Client Responsiveness

11 November 2020 *Revised 22 December 2020*

Antonio ladarola, P.E. Town Engineer 4 Brush Hill Road New Fairfield, CT 06082

RE: Stormwater Management Analysis New Fairfield High School 54 Gillotti Road New Fairfield, Connecticut 06812 Langan Project No.: 140215301

Dear Mr. ladarola:

This report provides an analysis of peak runoff discharges and the engineering design for the proposed stormwater conveyance system associated with the proposed New Fairfield High School located at 54 Gillotti Road in New Fairfield, Connecticut. The analysis area totals about 26.66-acres.

PROJECT DESPCRIPTION

Existing Site Conditions

The project site is located within the about 83.46-acre parcel owned by the Town of New Fairfield located at 54 Gillotti Road in New Fairfield, Connecticut. This parcel is currently occupied by the New Fairfield High School and Middle School as well as two residential buildings and garages. The proposed project site is located within the southern portion of this parcel and bound by residential properties to the north, south, and west, and the Meeting House Hill School to the east, see Figure 1. The site is located within the Residential 88 (R-88) zone. School use is permitted within this zone via a special permit.

A topographic survey prepared by Langan, dated April 21, 2020, indicates site elevations (NAVD88) vary from about 950 feet south of the existing school to about 910 feet at the project limit north of the existing school.

Based upon FEMA's Flood Insurance Rate Map (FIRM) Map number 09001C0110F for Fairfield County, Panel Number 110 of 626, effective date June 18, 2010, the entirety of the site is located within Zone X. This area is determined to be outside the 0.2% annual chance floodplain, see Figure 2.

According to the Web Soil Survey of Fairfield County published by the Natural Resources Conservation Service (NRCS), the site is comprised of Udorthents-Urban land complex, Udorthents-Smoothed, and Woodbridge fine sandy loam, see Figure 3. The closest surface water is an onsite wetland located in the northwestern portion of the site and is about 160 feet from the proposed project limits of disturbance.

Proposed Project

The proposed project includes renovations and partial demolition of the about 156,550 SF existing New Fairfield Middle & High School and the construction of a new 80,580 SF High School to the southwest of the existing school. Proposed site work includes a new parking layout, revising the bus and parent drop-off locations, new sidewalks, and a new central plaza area. Associated site utility and stormwater management improvements are also proposed to accommodate the project.

STORMWATER QUALITY IMPROVEMENTS (See Appendix D)

The proposed stormwater management plan was developed using the Connecticut Stormwater Quality Manual. This approach combines treatment practices in series to enhanced pollutant removal and achieve groundwater recharge, channel protection and peak runoff attenuation. Practices are classified as primary or secondary treatment types. Primary practices can be used as stand-alone treatment and secondary practices must be applied together with other measures to meet water quality objectives. The following section describes the measures proposed for the project:

Primary practices:

- **Underground Infiltration System** with pretreatment capture runoff from impervious areas and allow for infiltration of stormwater and pollutant removal through pervious soil. The proposed basins were designed to meet the following criteria for maximum effectiveness:
 - Minimum infiltration rate greater than 0.3 in/ hr
 - Minimum 5 feet of separation from basin bottom to groundwater and bedrock
 - Maximum drainage area of 5 acres
 - Location in natural soils
- **Bio-retention** are shallow depressions designed to filter runoff through a planted soil bed. Treated runoff is collected in an underdrain system which discharges into a storm sewer network. The rain gardens located in the center landscape islands of the parking lots meet the following design guidance

- Grade parking to slope towards bioretention practice
- Provide flat or slotted curb around island to reduce concentrated flow
- Plant suitable materials that can withstand alternating wet and dry conditions

Secondary practices

• **Hydrodynamic Separators/ swirl concentrators** are designed to remove coarse solids and oil droplets. These units are sized based on the water quality flow and are used in areas with high potential for spills, such as parking lots and loading areas. The units are designed to fully treat the Water Quality Flows (WQF) being directed to them, while allowing peak flows from the less frequent, more severe events to bypass the unit. The WQF is defined within CTDEEP's Stormwater Quality Manual as:

"The peak flow associated with the water quality volume calculated using the NRCS Graphical Discharge Method. Although most of the stormwater treatment practices in this Manual should be sized based on WQV, some treatment practices such as grass drainage channels and proprietary treatment devices (designed to treat higher flow rates, thereby requiring less water quality storage volume) are more appropriately designed based on peak flow rate. In this approach, a stormwater treatment facility must have a flow rate capacity equal to or greater than the WQF in order to treat the entire water quality volume".

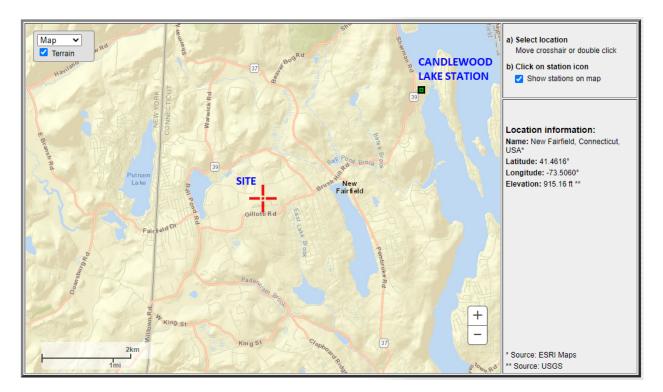
• **Deep Sump Catch Basins** provide for limited removal of trash, oil, and sediment from stormwater for small catchment areas with high imperviousness. These are used throughout the project as a pre-treatment measure before draining to a primary practice.

PEAK RUNOFF ANALYSIS (See Appendices A & B)

The stormwater management system was designed in accordance with Section 1.5.4 of the New Fairfield Zoning Regulations, amended to 4-4-2016. These regulations require that a site shall be designed to minimize runoff volumes, prevent flooding, reduce soil erosion, and protect water quality. Mechanisms for this purpose shall be designed to handle runoff up to, and including, a 25-year, 24-hour duration storm event. For the purpose of this report the 2-, 10-, and 25-year storms were analyzed.

The peak runoff discharges for the existing and proposed conditions were analyzed using the USDA Soil Conservation Service Publication Technical Release (TR-55) "Urban Hydrology for Small Watersheds", which provides procedures for estimating runoff and peak discharges in small watersheds. The analysis is based upon the watershed areas, land coverage, soil group types, curve numbers (CN), times of concentration (Tc), rainfall distribution type, and rainfall amount for the design storm events. The pre- and post-development peak discharge rates of

runoff have been evaluated utilizing stormwater modeling software. The extents of the project limit was included in the analysis; see Drawings EXWS and PRWS.


The peak runoff discharges for the existing and proposed conditions were analyzed using Soil Conservation Service (SCS) methodology which outlines procedures for calculating peak rates of runoff resulting from precipitation events as well as procedures for developing runoff hydrographs. The extents of our project limit was included in the analysis; see Drawings EXWS and PRWS. Values for area, curve number (CN), and a time of concentration (Tc) were calculated for the existing and proposed conditions.

The curve number is a land sensitive coefficient that dictates the relationship between total rainfall depth and direct storm runoff. The soils within the watershed are divided into hydrologic soil groups (A, B, C, and D). The SCS classification system evaluates the runoff potential of a soil according to its infiltration and transmission rates. "A" soils have the lowest runoff potential, while "D" soils have the greatest runoff potential. Soils within the project area are mostly Udorthents-Urban land complex with a hydrologic soil rating of "B" and Woodbridge fine sandy loam with a hydrologic soil group designation of "C/D". A small area in the northwest section of the project limits is Udorthents-Smoothed with a hydrologic soil rating of "C".

The time of concentration (Tc) is defined as the time for runoff to travel from the hydraulically most distant point in the watershed to a point of interest. Values of time of concentration were determined for existing and proposed conditions based on land cover and slope of the flow path using methods outlined in TR-55.

For this study, a 24-hour SCS Type III standard rainfall distribution was used to determine the peak flow rates discharging from the site. Precipitation data used for the various storm events is based on the "NOAA Atlas 14 Point Precipitation Frequency Estimates: CT" for Candlewood Lake Station. Candlewood Lake Station was chosen for rainfall data because it is the station located within the closest proximity of the project location as shown in Graphic 1. A summary of all rainfall data utilized in the analysis for this site is provided below and a complete compilation of data provided by NOAA for this location is included in Appendix C.

LANGAN

Graphic 1. NOAA Rainfall Data Location Map

NOAA Precipitation Depth per Average						
Recurrence Interval [in]						
Duration 2-Year 10-Year 25-Year						
24-hour	3.50	5.49	6.72			

Existing Condition (See Appendix A)

The existing site is currently developed with the existing high school and middle school, a couple of residential buildings to the south, as well as various athletic fields and facilities. Impervious areas include building roofs, hardscape walkways and drives, and parking lots. Existing Watershed A (see Drawing No. EXWS) encompasses about 6.9-acres and includes two residential dwellings, garage, driveway, lawn and wooded area. This watershed flows untreated to the existing drainage collection system located in Gillotti Road.

Existing Watershed B encompasses about 17.64-acres and includes portions of the school, parking lot, athletic fields. This watershed flows untreated into an existing storm system onsite and discharges to the onsite wetland located in the northwest portion of the property.

Existing Watershed C is about 2.12-acres and comprised of a portion of the parking lot south of the school. This watershed flows untreated into an existing storm system onsite and discharges

east of the school. This existing system then sheet flows east and ultimately discharges towards a pond located on site.

Proposed Condition (See Appendix B)

In the proposed condition, (see Drawing No. PRWS) Watershed A1 (2.80-acres) encompasses Gillotti Road, a portion of the driveway and associated lawn and wooded areas. The stormwater runoff will sheet flow towards Gillotti Road and discharge to the existing drainage collection system.

Proposed Watershed A2 (2.70-acres) encompasses a portion of the southern parking lot, and associated landscape islands. The stormwater will be caught by catch basins and piped underground to the water quality unit before discharging into an underground stormwater infiltration system. The proposed underground stormwater infiltration system will provide water quality treatment and control the rate of stormwater runoff resulting from the development to less than existing conditions rates. The water quality units have been selected to achieve a minimum 80% of the annual solids load reduction and a 100% floatables reduction. The overflow from the infiltration system will be pipped to the existing drainage collection system in Gillotti Road.

Proposed Watershed B will be divided into five subwatersheds – B1 to B5. Proposed Watershed B1 (2.40-acres) encompasses the southern parking lot, a portion of proposed school, access drive, the southern parking lot and associated landscape islands. The stormwater will be caught by catch basins and piped underground to a water quality unit before discharging into an underground stormwater infiltration system. The proposed underground stormwater infiltration system will provide water quality treatment and control the rate of stormwater runoff resulting from the development to less than existing conditions rates. The overflow from the infiltration system will be directed towards the onsite wetland located northwest of the proposed school. The water quality units have been selected to achieve a minimum 80% of the annual solids load reduction and a 100% floatables reduction.

Proposed Watershed B2 (0.30-acres) encompasses A portion of the western parking lot, a portion and associated landscape islands. The stormwater will sheet flow to the bioretention stormwater management practice. A gravel diaphragm runs along the edge of the parking lot to provide pretreatment prior to the stormwater runoff entering the bioretention basin. Underdrains will be provided for the bioretention system. The proposed bioretention basin will provide water quality treatment for the associated parking lot. The overflow will be directed towards the onsite wetland located north west of the proposed school.

Proposed Watershed B3 (2.60-acres) encompasses a portion of the proposed school, access drive and courtyard. The stormwater will be caught by catch basins and piped underground to a water quality unit before discharging into an underground stormwater infiltration system. The proposed underground stormwater infiltration system will provide water quality treatment and control the rate of stormwater runoff resulting from the development to less than existing conditions rates. The overflow from the infiltration system will be directed towards the onsite wetland located northwest of the proposed school. The water quality units have been selected to achieve a minimum 80% of the annual solids load reduction and a 100% floatables reduction.

Proposed Watershed B4 (1.30-acres) encompasses the northern parking lot and associated landscape islands. The stormwater will be caught by catch basins and piped underground to a water quality unit before discharging into an underground stormwater infiltration system. The proposed underground stormwater infiltration system will provide water quality treatment and control the rate of stormwater runoff resulting from the development to less than existing conditions rates. The overflow from the infiltration system will be directed towards the onsite wetland located northwest of the proposed school. The water quality units have been selected to achieve a minimum 80% of the annual solids load reduction and a 100% floatables reduction.

Proposed Watershed B5 (12.48-acres) consists of the athletic fields that sheet flows towards the onsite wetland.

Proposed Watershed C1 (2.08-acres) was reduced in size and impervious cover from the existing condition, but otherwise remained the same and discharges to the existing drainage collection system and eventually flows east towards the pond on site.

Per Section 1.5.4 of the Town of New Fairfield Zoning Regulations, all development shall be designed to the extent practical with the goal of no net runoff from the site through the use Best Management Practices (BMP to minimize, treat, prevent, and/or reduce degradation of water quality and flooding potential due to storm water runoff from parking and/or impervious surfaces and to reduce Effective Impervious Coverage wherever possible. a site shall be designed to maximize the amount of runoff able to percolate directly into the soil. Mechanisms for this purpose were designed for all storms up to and including the 25-year, 24-hour storm event. An outlet control structure, utilizing low flow orifices and a high-flow overflow weir is proposed to help attenuate and reduce peak flow rates.

Our drainage analysis shows that the proposed development will maintain existing drainage patterns, control the rate of stormwater runoff resulting from the development, and provide water quality treatment and erosion control during and after construction.

The total watershed peak flow rates are summarized below.

	-			
	Current	Proposed	Delta	% Reduction
2-Year	6.50	5.96	-0.54	9.1%
10-Year	15.06	14.77	-0.29	2.0%
25-Year	20.85	19.49	-1.36	7.0%
Site Disc	harge Peak Flow (Comparison for Cor	nbined WS-B	, Wetland (CFS)
	Current	Proposed	Delta	% Reduction
2- Year	21.49	18.94	-2.55	13.5%
10-Year	44.83	43.85	-0.98	2.2%
25-Year	60.06	59.90	-0.16	0.3%

Site Discharge Peak Flow Comparison for WS-A, Gillotti Road (CFS)

Site Discharge Peak Flow Comparison for WS-C, 18" Pipe (CFS)

	Current	Proposed	Delta	% Reduction
2- Year	5.60	5.17	-0.43	8.3%
10-Year	9.42	8.94	-0.48	5.3%
25-Year	11.76	11.26	-0.50	4.4%

Site Discharge Peak Flow Comparison (CFS)

		0		
	Current	Proposed	Delta	% Reduction
2- Year	33.59	30.07	-3.52	11.7%
10-Year	69.31	67.56	-1.75	2.6%
25-Year	92.67	90.65	-2.02	2.2%

STORMWATER CONVEYANCE SYSTEM (See Appendix E)

The stormwater conveyance system was sized using the Rational Method for the 25-year storm event. A 25-year storm event was chosen as directed by the New Fairfield town engineer in a phone conversation on 11/09/20. Values for area, runoff coefficient (C), and a time of concentration were calculated for each drainage area. The average runoff coefficient was calculated based upon the following cover types:

<u>Cover</u>	<u>C</u>
Grass/Pervious	0.3
Pavement/Impervious	0.9

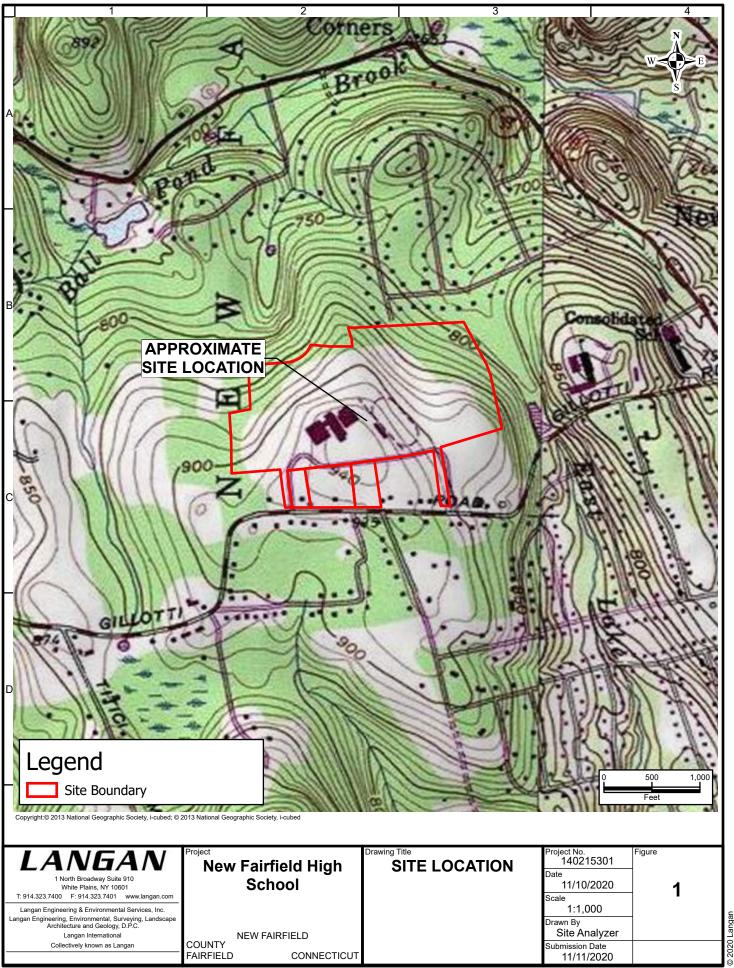
Rainfall intensities were taken from the "NOAA Atlas 14 Point Precipitation Frequency Estimates: CT" for Hartford Bradley AP Station in Connecticut. Stormwater pipes were then sized based upon the Manning's Equation for full flow pipe capacity.

Please refer to the Drawings for additional drainage information.

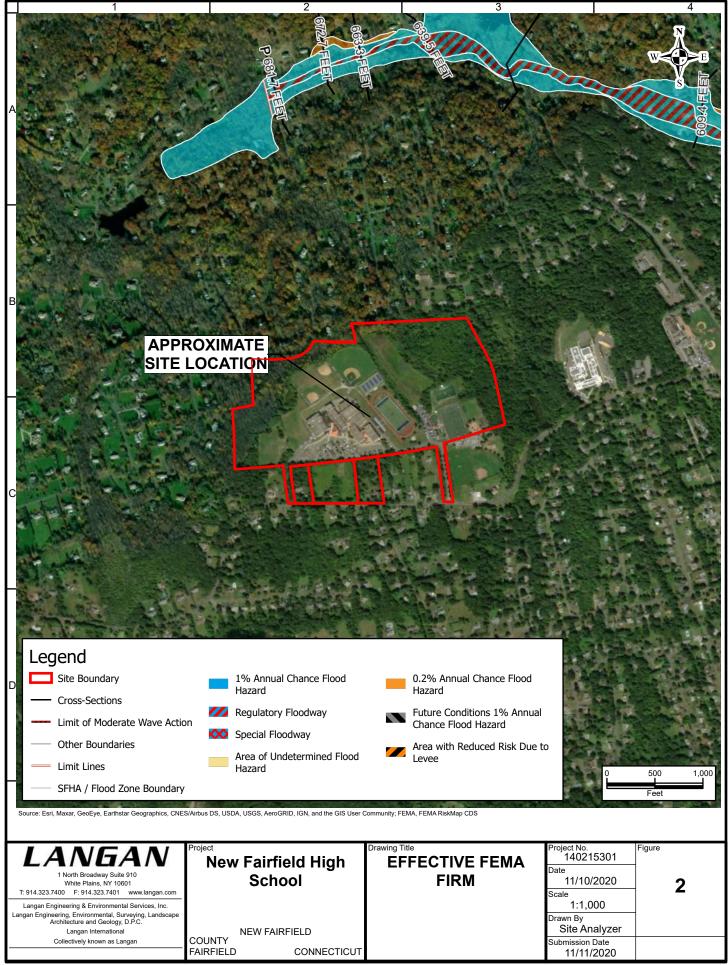
LIST OF FIGURES

- Fig. 1 USGS Location Map
- Fig. 2 FEMA Map
- Fig. 3 NRCS Soil Map

LIST OF DRAWINGS


- EXWS Existing Drainage Area Plan
- PRWS Proposed Drainage Area Plan

REFERENCE DRAWINGS (See Submission Set)


- CG100-104 Grading & Drainage Plans
- CG501 Grading and Drainage Details
- CE100-104 Soil Erosion & Sediment Control Plan

LIST OF APPENDICES

- Appendix A Existing Stormwater Discharge Calculations
- Appendix B Proposed Stormwater Discharge Calculations
- Appendix C NOAA Rainfall Data
- Appendix D Stormwater Quality Calculations
- Appendix E Stormwater Conveyance System Calculations

Disclaimer: This information is produced by an automated system and may not be complete. The absence of a feature is not a confirmation that the feature is not present at the subject location. Information produced is in the public domain and unless noted has not been field verified or provided for any specific use. Users are also cautioned to confirm the information shown is suitable for their intended use. Spatial Reference: NAD 1983 StatePlane Connecticut FIPS 0600 Feet

Disclaimer: This information is produced by an automated system and may not be complete. The absence of a feature is not a confirmation that the feature is not present at the subject location. Information produced is in the public domain and unless noted has not been field verified or provided for any specific use. Users are also cautioned to confirm the information shown is suitable for their intended use. Spatial Reference: NAD 1983 StatePlane Connecticut FIPS 0600 Feet

Langar

2020

- Hydrologic Soil Group – Summary By Map Unit Table

Langan Engineering & Environmental Services, Inc. Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Langan International

Collectively known as Langan

Summary by Map Unit – State of Connecticut (CT600)

Drawn By Site Analyzer

1:1,000

Submission Date

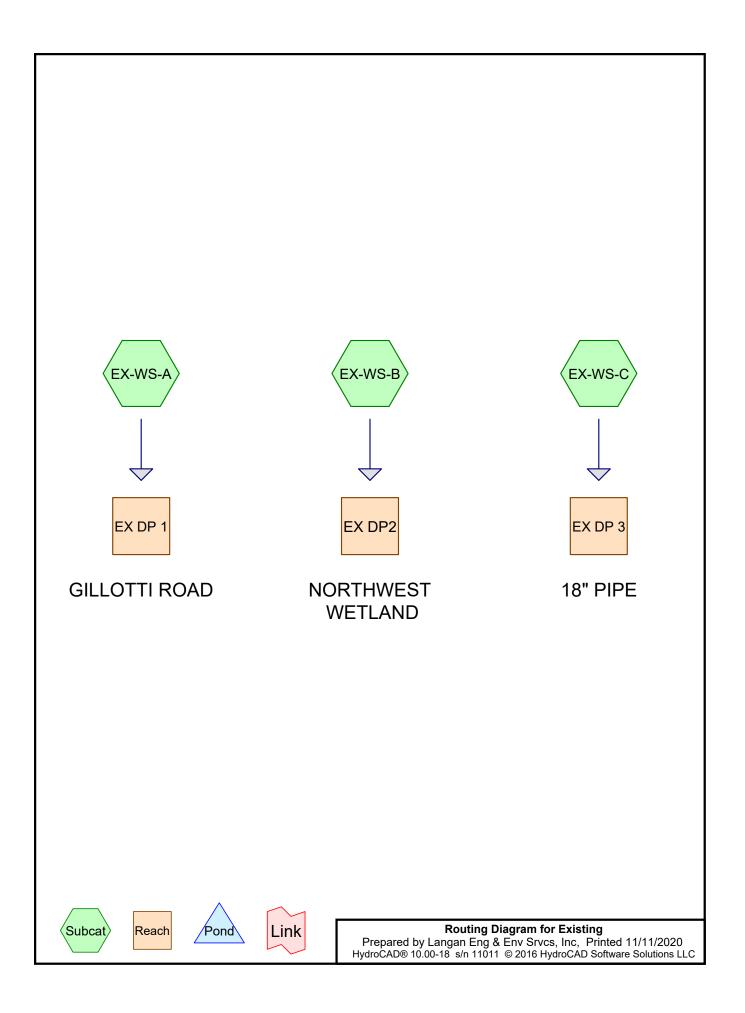
2020 Langan

G

Map unit symbol	Map unit name					
3	Ridgebury, Leicester, and Whitman soils, 0 to 8 perce	ent slopes, extremely stony	D			
4	Leicester fine sandy loam		B	/D		
45A	Woodbridge fine sandy loam, 0 to 3 percent slopes		C,	/D		
45B	Woodbridge fine sandy loam, 3 to 8 percent slopes		C,	/D		
46B	Woodbridge fine sandy loam, 0 to 8 percent slopes,	very stony	C,	/D		
46C	Woodbridge fine sandy loam, 8 to 15 percent slopes	, very stony	C,	/D		
47C	Woodbridge fine sandy loam, 3 to 15 percent slopes	, extremely stony	C,	/D		
48B	Georgia and Amenia silt loams, 2 to 8 percent slopes	5	C			
49B	Georgia and Amenia silt loams, 3 to 8 percent slopes	Georgia and Amenia silt loams, 3 to 8 percent slopes, very stony				
73C	Charlton-Chatfield complex, 0 to 15 percent slopes,	very rocky	В			
85B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony					
85C	Paxton and Montauk fine sandy loams, 8 to 15 perce	ent slopes, very stony	C			
86D	Paxton and Montauk fine sandy loams, 15 to 35 percent	cent slopes, extremely stony	C			
306	Udorthents-Urban land complex	Udorthents-Urban land complex				
308	Udorthents, smoothed		C			
	Project	Drawing Title	Project No.	Figure		
ANGA	IV New Fairfield High	NRCS SOIL MAP	140215301	4		
1 North Broadway Suite 910 White Plains, NY 10601			Date 11/10/2020			
3.7400 F: 914.323.7401 w			Scale	-		

FAIRFIELD CONNECTICUT 11/11/2020 Disclaimer: This information is produced by an automated system and may not be complete. The absence of a feature is not a confirmation that the feature is not present at the subject location. Information produced is in the public domain and unless noted has not been field verified or provided for any specific use. Users are also cautioned to confirm the information shown is suitable for their intended use. Spatial Reference: NAD 1983 StatePlane Connecticut FIPS 0600 Feet

NEW FAIRFIELD

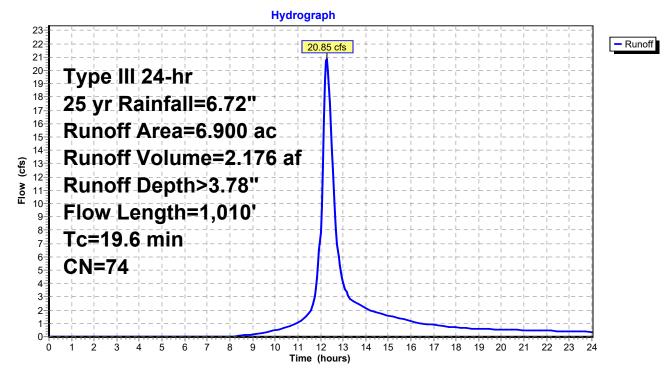

COUNTY

APPENDIX A

Existing Stormwater Discharge Calculations

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.700	69	50-75% Grass cover, Fair, HSG B (EX-WS-A, EX-WS-B, EX-WS-C)
7.400	79	50-75% Grass cover, Fair, HSG C (EX-WS-B)
5.170	98	Paved parking, HSG B (EX-WS-B, EX-WS-C)
0.900	98	Paved parking, HSG C (EX-WS-A)
2.290	60	Woods, Fair, HSG B (EX-WS-B, EX-WS-C)
5.200	73	Woods, Fair, HSG C (EX-WS-A, EX-WS-B)
26.660	78	TOTAL AREA

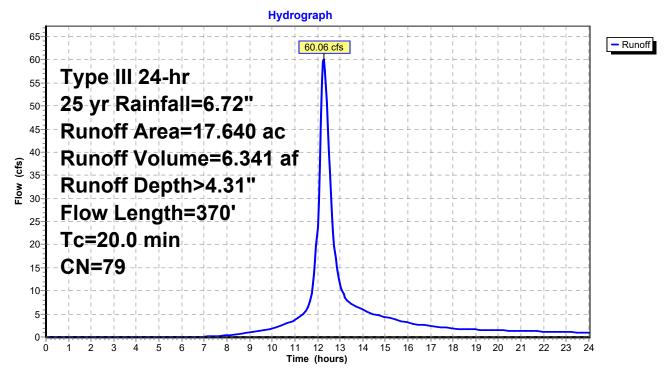

Summary for Subcatchment EX-WS-A:

Runoff = 20.85 cfs @ 12.27 hrs, Volume= 2.176 af, Depth> 3.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

Area	(ac) C	N Desc	cription		
0.	900 9	8 Pave	ed parking	, HSG C	
4.	100 6	i 50-7	5% Grass	cover, Fair	, HSG B
1.	900 7	'3 Woo	ds, Fair, F	ISG C	
6.	900 7	'4 Weig	ghted Aver	rage	
6.	000	86.9	6% Pervio	us Area	
0.	900	13.0	4% Imperv	vious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.0	45	0.0600	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.50"
6.3	105	0.0600	0.28		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
0.5	55	0.0600	1.71		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
4.0	270	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.9	155	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.9	380	0.0150	6.98	8.57	Pipe Channel,
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.012 Concrete pipe, finished
19.6	1,010	Total			

Subcatchment EX-WS-A:

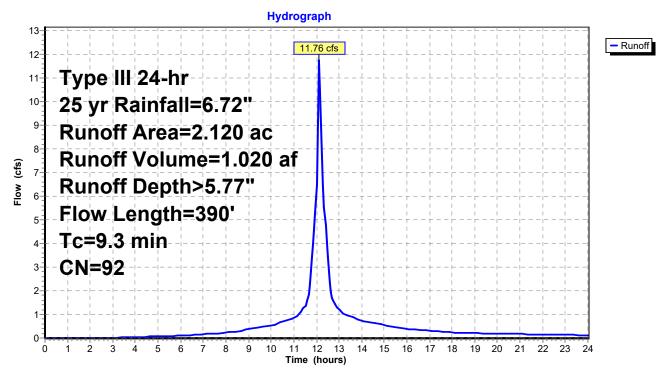

Summary for Subcatchment EX-WS-B:

Runoff = 60.06 cfs @ 12.27 hrs, Volume= 6.341 af, Depth> 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

Area	(ac) C	N Des	cription		
3.	500 9	98 Pave	ed parking	, HSG B	
2.	240 6	60 Woo	ods, Fair, F	ISG B	
7.	400	79 50-7	'5% Grass	cover, Fair	, HSG C
				cover, Fair	, HSG B
3.	300 7	73 Woo	ods, Fair, ⊦	ISG C	
17.	640	79 Wei	ghted Avei	rage	
	140	80.1	6% Pervic	us Area	
3.	500	19.8	4% Imper	vious Area	
-		0		o	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
17.1	150	0.0100	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
1.2	50	0.0100	0.70		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.7	170	0.0600	1.71		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
20.0	370	Total			

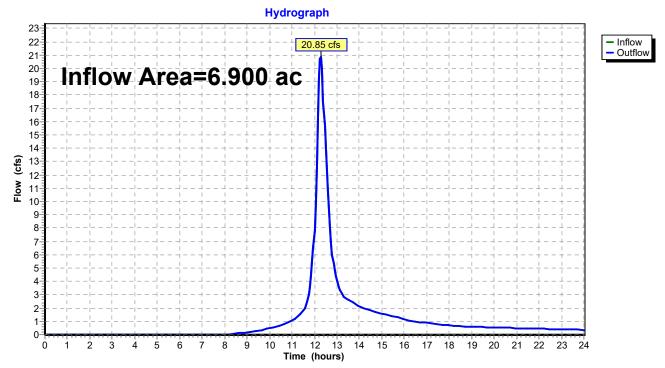
Subcatchment EX-WS-B:


Summary for Subcatchment EX-WS-C:

Runoff = 11.76 cfs @ 12.13 hrs, Volume= 1.020 af, Depth> 5.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

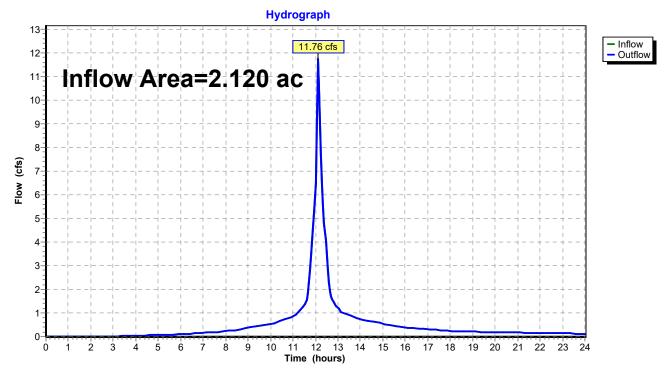
Area	(ac) C	N Des	cription		
1.	670	98 Pave	ed parking	, HSG B	
0.	050	60 Woo	ods, Fair, F	ISG B	
0.	400	59 50-7	5% Grass	cover, Fair	, HSG B
2.	120	92 Weig	ghted Aver	age	
0.	450	21.2	3% Pervio	us Area	
1.	670	78.7	7% Imperv	vious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.3	10	0.0100	0.04		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.50"
3.4	20	0.0100	0.10		Sheet Flow,
					Grass: Short
0.9	120	0.0600	2.32		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.50"
0.7	240	0.0800	5.74		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
9.3	390	Total			


Subcatchment EX-WS-C:

Summary for Reach EX DP 1: GILLOTTI ROAD

Inflow Area	a =	6.900 ac, 13.04% Impervious, Inflow Depth > 3.78" for 25 yr event
Inflow	=	20.85 cfs @ 12.27 hrs, Volume= 2.176 af
Outflow	=	20.85 cfs @ 12.27 hrs, Volume= 2.176 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

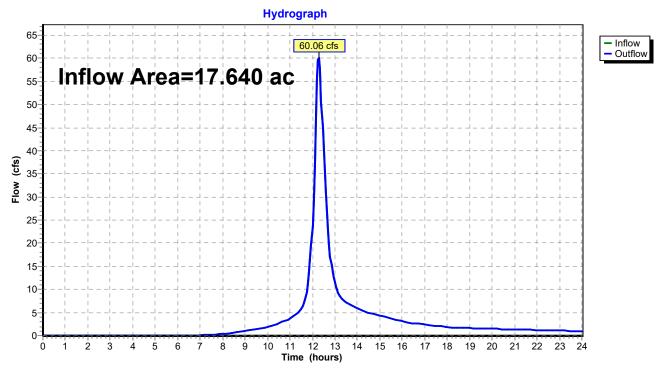


Reach EX DP 1: GILLOTTI ROAD

Summary for Reach EX DP 3: 18" PIPE

Inflow Are	a =	2.120 ac, 78.77% Impervious, Inflow Depth > 5.77" for 25 yr event	
Inflow	=	11.76 cfs @ 12.13 hrs, Volume= 1.020 af	
Outflow	=	11.76 cfs @ 12.13 hrs, Volume= 1.020 af, Atten= 0%, Lag= 0.0 m	in

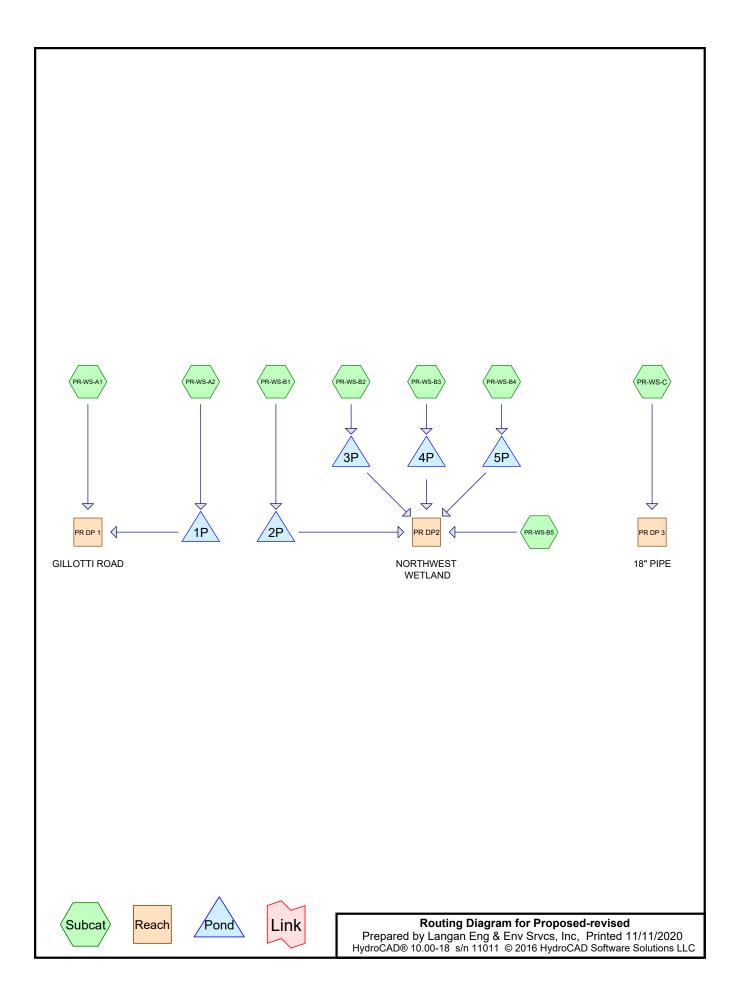
Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs



Reach EX DP 3: 18" PIPE

Summary for Reach EX DP2: NORTHWEST WETLAND

Inflow Area	=	17.640 ac, 19.84% Impervious, Inflow Depth > 4.31" for 25 yr event
Inflow :	=	60.06 cfs @ 12.27 hrs, Volume= 6.341 af
Outflow =	=	60.06 cfs @ 12.27 hrs, Volume= 6.341 af, Atten= 0%, Lag= 0.0 min

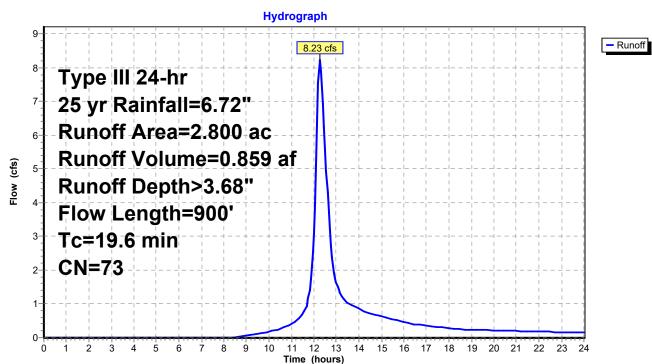

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Reach EX DP2: NORTHWEST WETLAND

APPENDIX B

Proposed Stormwater Discharge Calculations

Area Listing (all nodes)

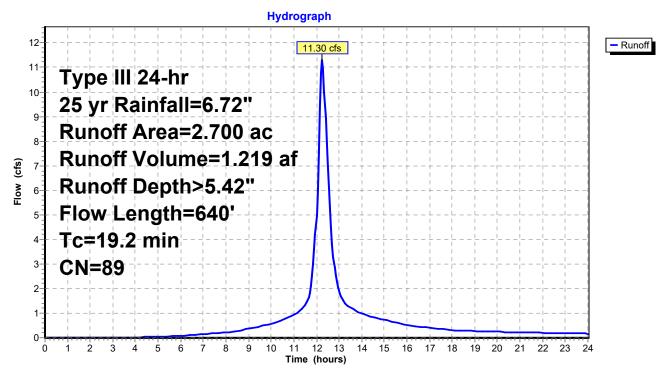

CN	Description				
	(subcatchment-numbers)				
69	50-75% Grass cover, Fair, HSG B (PR-WS-A2, PR-WS-B5)				
79	50-75% Grass cover, Fair, HSG C (PR-WS-B5)				
61	>75% Grass cover, Good, HSG B (PR-WS-A1, PR-WS-B2, PR-WS-B3,				
	PR-WS-B4, PR-WS-C)				
74	>75% Grass cover, Good, HSG C (PR-WS-B1)				
85	Green parking (PR-WS-A2)				
98	Paved parking, HSG B (PR-WS-A2, PR-WS-B1, PR-WS-B2, PR-WS-B3,				
	PR-WS-B4, PR-WS-B5, PR-WS-C)				
98	Paved parking, HSG C (PR-WS-A1)				
60	Woods, Fair, HSG B (PR-WS-B5, PR-WS-C)				
73	Woods, Fair, HSG C (PR-WS-A1, PR-WS-B5)				
79	TOTAL AREA				
	69 79 61 74 85 98 98 60 73				

Summary for Subcatchment PR-WS-A1:

Runoff = 8.23 cfs @ 12.27 hrs, Volume= 0.859 af, Depth> 3.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

Area	(ac) C	N Desc	cription					
0.	0.700 98 Paved parking, HSG C							
1.	1.500 61 >75% Grass cover, Good, HSG B							
0.	<u>600 7</u>	<u>′3 Woo</u>	ods, Fair, F	ISG C				
2.	800 7	'3 Weig	ghted Aver	rage				
2.	100	75.0	0% Pervio	us Area				
0.	700	25.0	0% Imperv	vious Area				
Tc	Length	Slope	Velocity		Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.2	90	0.0600	0.12		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.50"			
4.0	60	0.0600	0.25		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.50"			
0.9	90	0.0600	1.71		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
1.6	280	0.0200	2.87		Shallow Concentrated Flow,			
		0.0450		0	Paved Kv= 20.3 fps			
0.9	380	0.0150	6.98	8.57	Pipe Channel,			
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'			
					n= 0.012 Concrete pipe, finished			
19.6	900	Total						


Subcatchment PR-WS-A1:

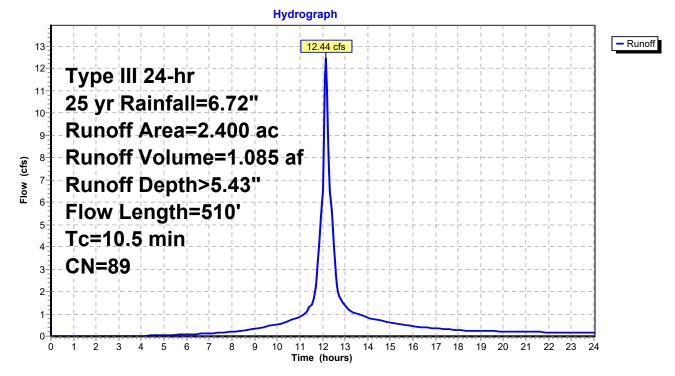
Summary for Subcatchment PR-WS-A2:

Runoff = 11.30 cfs @ 12.26 hrs, Volume= 1.219 af, Depth> 5.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

	Area	(ac) (CN Des	cription		
	1.	580	98 Pav	ed parking	, HSG B	
	0.	600	69 50-7	75% Grass	cover, Fair	, HSG B
*	0.	520	85 Gre	en parking		
	2.	700	89 Wei	ghted Aver	rage	
	1.	120	41.4	8% Pervio	us Area	
	1.	580	58.5	52% Imperv	vious Area	
	Тс	Length		Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.3	150	0.0250	0.14		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.50"
	0.5	30	0.0250	1.11		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.5	160	0.0600	4.97		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.9	300	0.0100	5.26	6.46	Pipe Channel,
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.013 Corrugated PE, smooth interior
	19.2	640	Total			

Subcatchment PR-WS-A2:

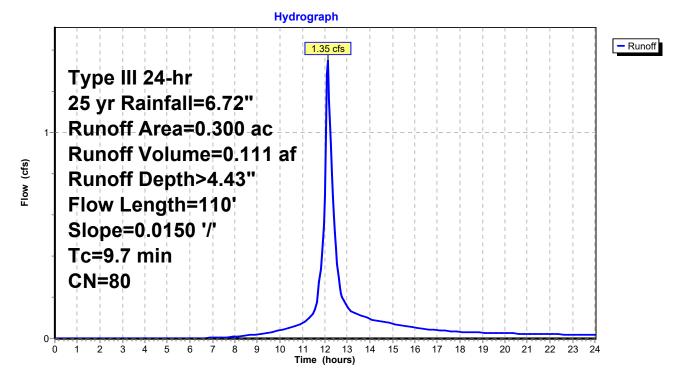

Summary for Subcatchment PR-WS-B1:

Runoff = 12.44 cfs @ 12.14 hrs, Volume= 1.085 af, Depth> 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

_	Area	(ac) C	N Des	cription						
	1.	500 9	98 Pave	Paved parking, HSG B						
	0.900 74 >75% Grass cover, Good, HSG C									
	2.	400 8	39 Weig	ghted Aver	age					
	0.	900	37.5	0% Pervio	us Area					
	1.	500	62.5	0% Imperv	/ious Area					
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.2	150	0.1200	0.27		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.50"				
	1.3	360	0.0100	4.54	3.56	Pipe Channel,				
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
						n= 0.013 Corrugated PE, smooth interior				
	10.5	510	Total							

Subcatchment PR-WS-B1:

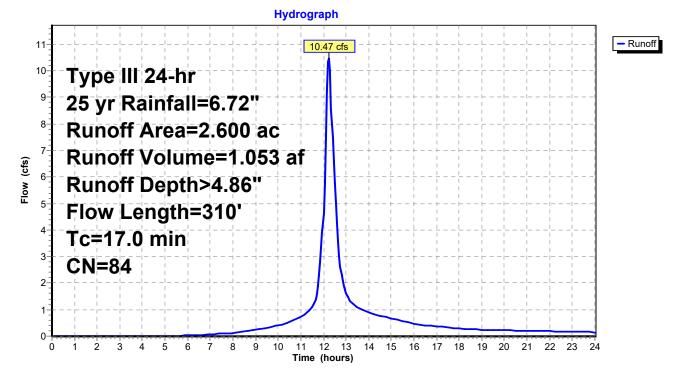

Summary for Subcatchment PR-WS-B2:

Runoff = 1.35 cfs @ 12.14 hrs, Volume= 0.111 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

Area	(ac) C	N Des	cription		
0.	150	98 Pav	ed parking	, HSG B	
0.	150	61 >75	% Grass c	over, Good	, HSG B
0.	300	30 Wei	ghted Aver	age	
0.	150	50.0	0% Pervio	us Area	
0.	150	50.0	0% Imperv	/ious Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.8	50	0.0150	0.09		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.50"
0.9	60	0.0150	1.16		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.50"
9.7	110	Total			

Subcatchment PR-WS-B2:


Summary for Subcatchment PR-WS-B3:

Runoff = 10.47 cfs @ 12.23 hrs, Volume= 1.053 af, Depth> 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

Area	(ac) C	N Des	cription			
1.	600 9	98 Pave	ed parking	, HSG B		
1.	1.000 61 >75% Grass cover, Good, HSG B					
2.	600 8	34 Weig	ghted Aver	age		
1.	000	38.4	6% Pervio	us Area		
1.	600	61.5	4% Imperv	/ious Area		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
16.5	90	0.0100	0.09		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 3.50"	
0.5	220	0.0300	7.86	6.17	Pipe Channel,	
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'	
					n= 0.013 Corrugated PE, smooth interior	
17.0	310	Total				

Subcatchment PR-WS-B3:

Summary for Subcatchment PR-WS-B4:

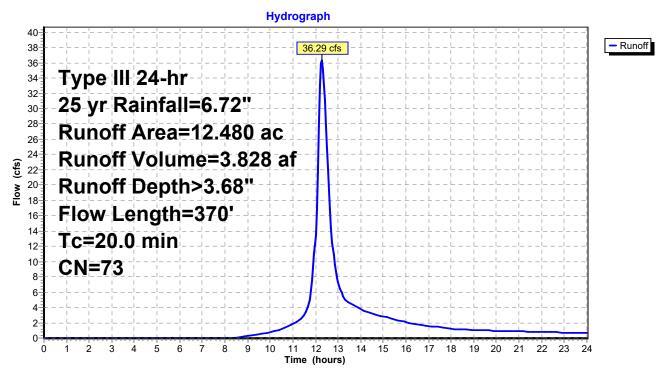
Runoff = 7.14 cfs @ 12.11 hrs, Volume= 0.564 af, Depth> 5.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

_	Area	(ac) C	N Des	cription		
0.900 98 Paved parking, HSG B						
	0.	400 6	61 >75°	% Grass c	over, Good	, HSG B
	1.	300 8	37 Weig	phted Aver	age	
	0.	400	30.7	7% Pervio	us Area	
	0.	900	69.2	3% Imperv	/ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.9	30	0.0100	0.07		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.50"
	0.7	70	0.0300	1.58		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.50"
	0.1	30	0.0120	4.97	3.90	Pipe Channel,
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
_						n= 0.013 Corrugated PE, smooth interior
	77	130	Total			

7.7 130 Total

Subcatchment PR-WS-B4:

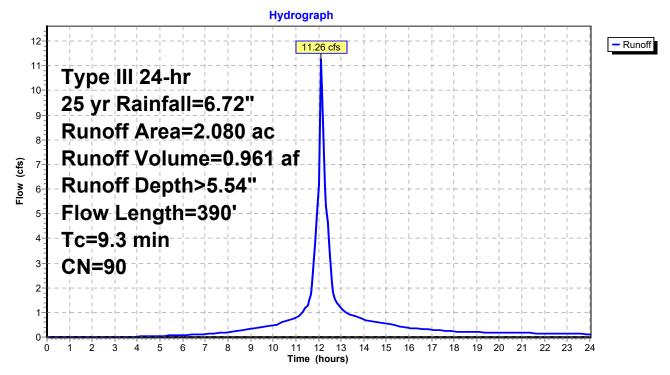

Summary for Subcatchment PR-WS-B5:

Runoff = 36.29 cfs @ 12.28 hrs, Volume= 3.828 af, Depth> 3.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

Area	(ac)	CN	Desc	cription					
0.	.300	98	Pave	Paved parking, HSG B					
2.	.240	60	Woo	ds, Fair, F	ISG B				
-	.340	79			cover, Fair				
1.	.300	69			cover, Fair	; HSG B			
3.	.300	73	Woo	ds, Fair, ⊦	ISG C				
12.	.480	73	-	phted Aver	•				
	.180			0% Pervio					
0.	.300		2.40	% Impervi	ous Area				
-		~			0				
Tc	Length		Slope	Velocity	Capacity	Description			
(min)	(feet	/	(ft/ft)	(ft/sec)	(cfs)				
17.1	150	0.0	0100	0.15		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
1.2	50	0.0	0100	0.70		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
1.7	170	0.0	0600	1.71		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
20.0	370) To	otal						

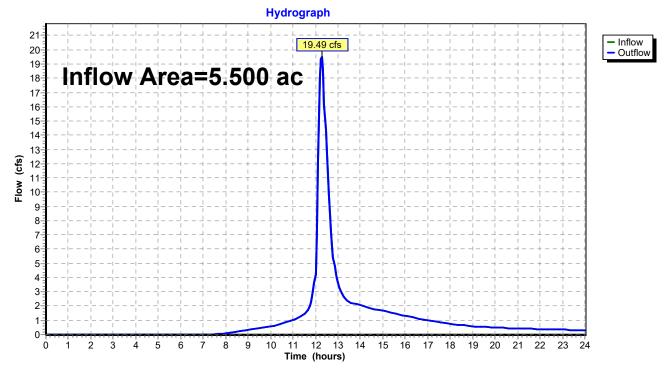
Subcatchment PR-WS-B5:


Summary for Subcatchment PR-WS-C:

Runoff = 11.26 cfs @ 12.13 hrs, Volume= 0.961 af, Depth> 5.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.72"

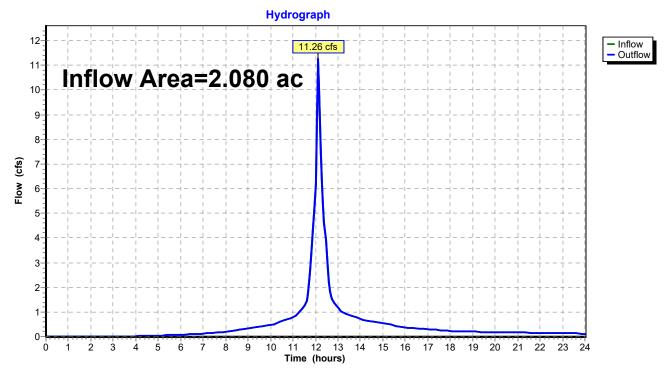
Area	(ac) C	N Des	cription		
1.610 98 Paved parking, HSG B			ed parking	, HSG B	
0.	.050 6	60 Woo	ods, Fair, F	ISG B	
0.	.420 6	61 >75	% Grass c	over, Good	, HSG B
2.	.080	90 Weig	ghted Aver	age	
0.	.470	22.6	0% Pervio	us Area	
1.	.610	77.4	0% Imperv	vious Area	
Тс	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.3	10	0.0100	0.04		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.50"
3.4	20	0.0100	0.10		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
0.9	120	0.0600	2.32		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.50"
0.7	240	0.0800	5.74		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
9.3	390	Total			


Subcatchment PR-WS-C:

Summary for Reach PR DP 1: GILLOTTI ROAD

Inflow Area =		5.500 ac, 41.45% Impervious, Inflow Depth > 4.47" for 25 yr event
Inflow	=	19.49 cfs @ 12.27 hrs, Volume= 2.049 af
Outflow	=	19.49 cfs @ 12.27 hrs, Volume= 2.049 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

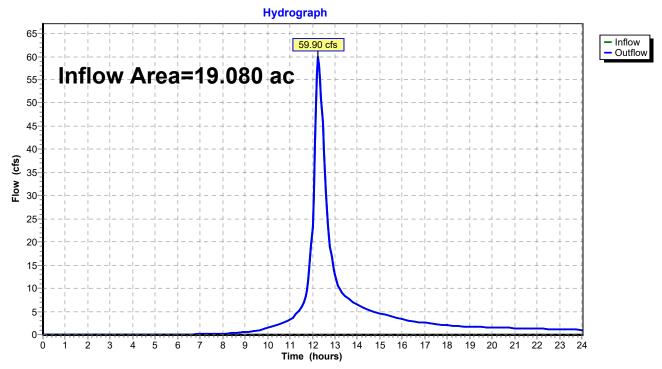


Reach PR DP 1: GILLOTTI ROAD

Summary for Reach PR DP 3: 18" PIPE

Inflow Area =		2.080 ac, 77.40% Impervious, Inflow Depth > 5.54" for 25 yr event
Inflow	=	1.26 cfs @ 12.13 hrs, Volume= 0.961 af
Outflow	=	1.26 cfs @ 12.13 hrs, Volume= 0.961 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs



Reach PR DP 3: 18" PIPE

Summary for Reach PR DP2: NORTHWEST WETLAND

Inflow Area =		19.080 ac, 23.32% Impervious, Inflow Depth > 4.09" for 25 yr event
Inflow	=	59.90 cfs @ 12.26 hrs, Volume= 6.498 af
Outflow	=	59.90 cfs @ 12.26 hrs, Volume= 6.498 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Reach PR DP2: NORTHWEST WETLAND

Summary for Pond 1P:

Inflow Area =	2.700 ac, 58.52% Impervious, Inflow	Depth > 5.42" for 25 yr event
Inflow =	11.30 cfs @ 12.26 hrs, Volume=	1.219 af
Outflow =	11.26 cfs @ 12.27 hrs, Volume=	1.191 af, Atten= 0%, Lag= 0.8 min
Primary =	11.26 cfs @ 12.27 hrs, Volume=	1.191 af

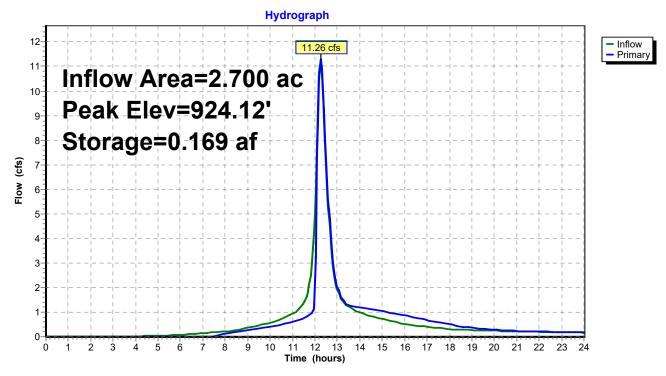
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 924.12' @ 12.27 hrs Surf.Area= 0.051 ac Storage= 0.169 af

Plug-Flow detention time= 55.8 min calculated for 1.188 af (97% of inflow) Center-of-Mass det. time= 41.9 min (836.8 - 794.9)

Volume	Invert	Avail.Storage	Storage Description	
#1A	918.70'	0.073 af	15.58'W x 141.93'L x 5.50'H Field A	
			0.279 af Overall - 0.097 af Embedded = 0.182 af x 40.0% Voids	
#2A	919.45'	0.097 af	ADS_StormTech MC-3500 d +Capx 38 Inside #1	
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf	
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap	
			2 Rows of 19 Chambers	
			Cap Storage= +14.9 cf x 2 x 2 rows = 59.6 cf	
		0.170 af	Total Available Storage	

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	919.50'	18.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 919.50' / 916.00' S= 0.0583 '/' Cc= 0.900
#2	Device 1	923.30'	n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf 4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00
#3	Device 1	919.50'	Coef. (English) 2.80 2.92 3.08 3.30 3.32 5.0" Vert. Orifice/Grate C= 0.600


Primary OutFlow Max=11.17 cfs @ 12.27 hrs HW=924.12' (Free Discharge)

-**1=Culvert** (Passes 11.17 cfs of 13.21 cfs potential flow)

-2=Broad-Crested Rectangular Weir (Weir Controls 9.79 cfs @ 2.99 fps)

-3=Orifice/Grate (Orifice Controls 1.38 cfs @ 10.11 fps)

Pond 1P:

Summary for Pond 2P:

Inflow Area =	=	2.400 ac, 62.50% Impervious, Inflow Depth > 5.43" for 25 yr event	
Inflow =		12.44 cfs @ 12.14 hrs, Volume= 1.085 af	
Outflow =		9.80 cfs @ 12.23 hrs, Volume= 1.075 af, Atten= 21%, Lag= 5.4 min	
Primary =		9.80 cfs @ 12.23 hrs, Volume= 1.075 af	

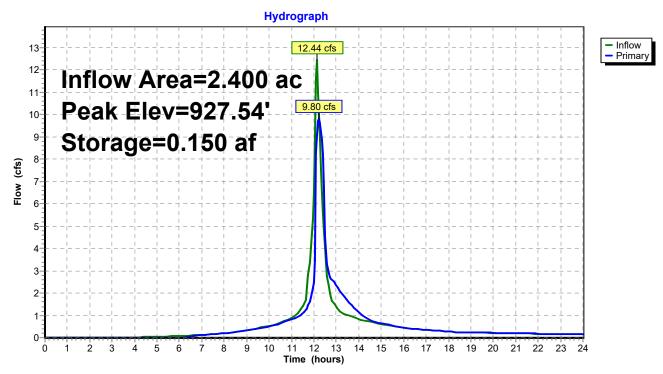
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 927.54' @ 12.23 hrs Surf.Area= 0.045 ac Storage= 0.150 af

Plug-Flow detention time= 21.3 min calculated for 1.072 af (99% of inflow) Center-of-Mass det. time= 15.1 min (802.8 - 787.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	922.10'	0.070 af	23.25'W x 85.07'L x 5.75'H Field A
			0.261 af Overall - 0.085 af Embedded = 0.176 af x 40.0% Voids
#2A	923.10'	0.085 af	ADS_StormTech MC-3500 d +Capx 33 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			3 Rows of 11 Chambers
			Cap Storage= +14.9 cf x 2 x 3 rows = 89.4 cf
		0.156 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	922.50'	15.0" Round Culvert
			L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 922.50' / 921.40' S= 0.0183 '/' Cc= 0.900
#2	Device 1	925.50'	n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf 5.0' long x 0.5' breadth Broad-Crested Rectangular Weir
#3	Device 1	922.50'	Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32 8.0" Vert. Orifice/Grate C= 0.600


Primary OutFlow Max=9.75 cfs @ 12.23 hrs HW=927.50' (Free Discharge)

-1=Culvert (Inlet Controls 9.75 cfs @ 7.95 fps)

-2=Broad-Crested Rectangular Weir (Passes < 46.83 cfs potential flow)

-3=Orifice/Grate (Passes < 3.63 cfs potential flow)

Pond 2P:

Summary for Pond 3P:

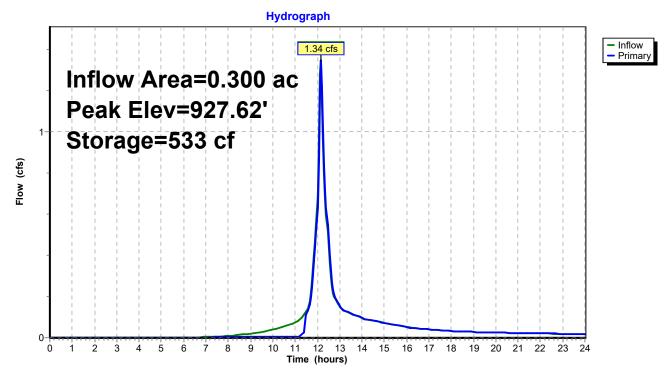
Inflow Area =	0.300 ac, 50.00% Impervious, Inflow	Depth > 4.43" for 25 yr event
Inflow =	1.35 cfs @ 12.14 hrs, Volume=	0.111 af
Outflow =	1.34 cfs @ 12.15 hrs, Volume=	0.101 af, Atten= 0%, Lag= 1.0 min
Primary =	1.34 cfs @ 12.15 hrs, Volume=	0.101 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 927.62' @ 12.15 hrs Surf.Area= 924 sf Storage= 533 cf

Plug-Flow detention time= 64.2 min calculated for 0.101 af (91% of inflow) Center-of-Mass det. time= 20.8 min (832.9 - 812.1)

Volume	Inve	ert Avail.Sto	rage	Storage De	escription	
#1	927.0	00' 1,4	50 cf	Custom S	tage Data (P	rismatic)Listed below (Recalc)
_		~ ~ ~		0	a a	
Elevatio		Surf.Area		Store.	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
927.0	00	800		0	0	
928.0	00	1,000		900	900	
928.5	50	1,200		550	1,450	
		,			,	
Device	Routing	Invert	Outl	et Devices		
#1	Primary	923.00'	12.0	" Round C	ulvert	
	,		L= 3	30.0' CPP,	projecting, no	headwall, Ke= 0.900
						921.50' S= 0.0500 '/' Cc= 0.900
						ooth interior, Flow Area= 0.79 sf
#2	Device 1	923.00'			erdrain C=0	
#3	Device 1					irate C= 0.600
110	Derice	020.00			low at low hea	
#4	Device 2	927.00'				ugh bioretention media over Surface area
11-1	Dovice 2	021.00		ase-In= 0.0 ²		
#5	Primary	927.50'				0' rise Overflow Weir Cv= 2.47 (C= 3.09)
π3	i iiiial y	521.50	102	uey x 10.		$5 \text{ H3e Overnow vven } 0^{-} 2.47 (0- 3.09)$
Primary	OutFlow	Max=1 33 cfs (ര 12	15 hrs HW=	=927 62' (Fre	e Discharge)
·	Primary OutFlow Max=1.33 cfs @ 12.15 hrs HW=927.62' (Free Discharge)					

___________Culvert (Passes 0.01 cfs of 6.06 cfs potential flow)


2=Underdrain (Passes 0.01 cfs of 1.98 cfs potential flow)

4=Exfiltration through bioretention media(Exfiltration Controls 0.01 cfs)

-3=Horiz. Grate (Controls 0.00 cfs)

-5=Overflow Weir (Weir Controls 1.32 cfs @ 1.05 fps)

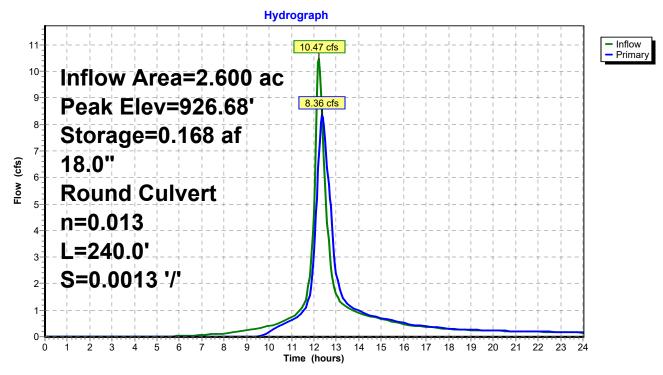
Pond 3P:

Summary for Pond 4P:

Inflow Area =	2.600 ac, 61.54% Impervious, Inflow	Depth > 4.86" for 25 yr event
Inflow =	10.47 cfs @ 12.23 hrs, Volume=	1.053 af
Outflow =	8.36 cfs @ 12.36 hrs, Volume=	1.004 af, Atten= 20%, Lag= 8.1 min
Primary =	8.36 cfs @ 12.36 hrs, Volume=	1.004 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 926.68' @ 12.36 hrs Surf.Area= 0.057 ac Storage= 0.168 af

Plug-Flow detention time= 50.4 min calculated for 1.004 af (95% of inflow) Center-of-Mass det. time= 24.9 min (832.7 - 807.8)


Volume	Invert	Avail.Storage	Storage Description
#1A	922.00'	0.090 af	16.58'W x 150.10'L x 5.75'H Field A
			0.329 af Overall - 0.102 af Embedded = 0.226 af x 40.0% Voids
#2A	923.00'	0.102 af	ADS_StormTech MC-3500 d +Capx 40 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			2 Rows of 20 Chambers
			Cap Storage= +14.9 cf x 2 x 2 rows = 59.6 cf
		0.193 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	923.30'	18.0" Round Culvert L= 240.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 923.30' / 923.00' S= 0.0013 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
Primary	OutFlow	Max=8.32 cfs @	2) 12.36 hrs HW=926.66' (Free Discharge)

1=Culvert (Barrel Controls 8.32 cfs @ 4.71 fps)

Pond 4P:

Summary for Pond 5P:

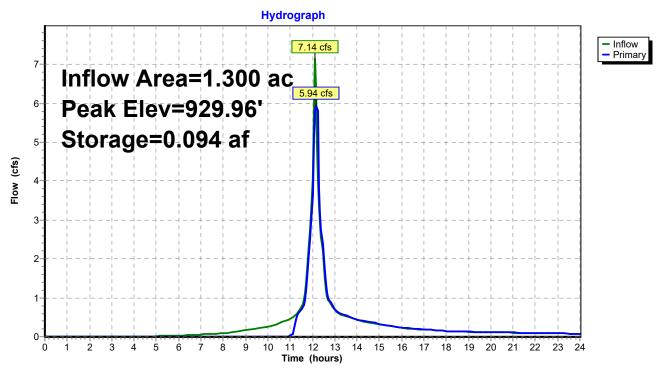
Inflow Area =	1.300 ac, 69.23% Impervious, In	flow Depth > 5.20" for 25 yr event
Inflow =	7.14 cfs @ 12.11 hrs, Volume=	0.564 af
Outflow =	5.94 cfs @ 12.17 hrs, Volume=	0.490 af, Atten= 17%, Lag= 3.6 min
Primary =	5.94 cfs @ 12.17 hrs, Volume=	0.490 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 929.96' @ 12.17 hrs Surf.Area= 0.035 ac Storage= 0.094 af

Plug-Flow detention time= 92.5 min calculated for 0.489 af (87% of inflow) Center-of-Mass det. time= 35.6 min (827.3 - 791.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	925.80'	0.055 af	23.75'W x 64.06'L x 5.75'H Field A
			0.201 af Overall - 0.063 af Embedded = 0.138 af x 40.0% Voids
#2A	926.80'	0.063 af	ADS_StormTech MC-3500 d +Capx 24 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			3 Rows of 8 Chambers
			Cap Storage= +14.9 cf x 2 x 3 rows = 89.4 cf
		0.118 af	Total Available Storage

Storage Group A created with Chamber Wizard


Device	Routing	Invert	Outlet Devices
#1	Primary	925.50'	12.0" Round Culvert
	-		L= 78.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 925.50' / 923.70' S= 0.0231 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	929.00'	0
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=5.92 cfs @ 12.17 hrs HW=929.94' (Free Discharge)

-1=Culvert (Inlet Controls 5.92 cfs @ 7.54 fps)

1-2=Broad-Crested Rectangular Weir (Passes 5.92 cfs of 12.05 cfs potential flow)

Pond 5P:

APPENDIX C

NOAA Rainfall Data

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 CANDLEWOOD LAKE Station ID: 06-1093 Location name: New Fairfield, Connecticut, USA* Latitude: 41.484°, Longitude: -73.4625° Elevation: Elevation (station metadata): 502 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

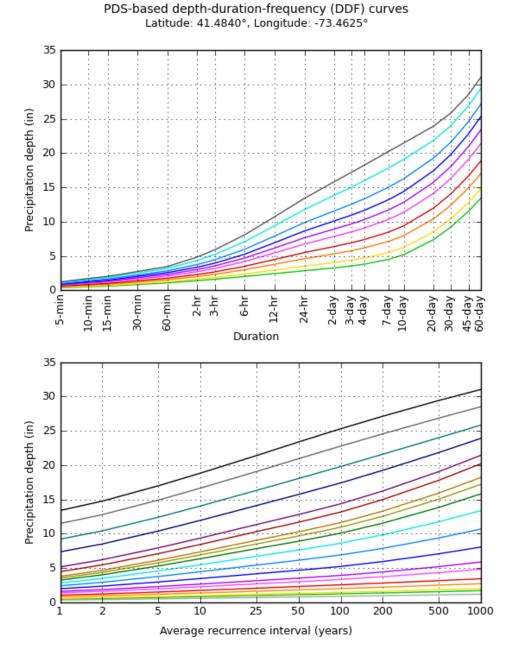
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

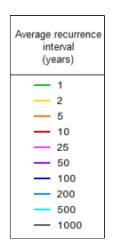
NOAA, National Weather Service, Silver Spring, Maryland

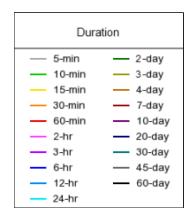
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

Dunation				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.358 (0.272-0.473)	0.419 (0.317-0.553)	0.518 (0.390-0.686)	0.599 (0.450-0.797)	0.711 (0.519-0.983)	0.796 (0.570-1.12)	0.884 (0.616-1.29)	0.978 (0.653-1.46)	1.11 (0.716-1.71)	1.21 (0.764-1.91
10-min	0.508 (0.385-0.670)	0.593 (0.449-0.783)	0.732 (0.553-0.970)	0.848 (0.637-1.13)	1.01 (0.735-1.39)	1.13 (0.808-1.59)	1.25 (0.873-1.82)	1.39 (0.926-2.07)	1.57 (1.01-2.42)	1.71 (1.08-2.70)
15-min	0.597 (0.453-0.788)	0.698 (0.528-0.921)	0.862 (0.650-1.14)	0.998 (0.749-1.33)	1.19 (0.865-1.64)	1.33 (0.951-1.87)	1.47 (1.03-2.15)	1.63 (1.09-2.44)	1.84 (1.19-2.85)	2.01 (1.27-3.18)
30-min	0.833 (0.631-1.10)	0.969 (0.733-1.28)	1.19 (0.899-1.58)	1.38 (1.03-1.83)	1.63 (1.19-2.25)	1.82 (1.31-2.57)	2.02 (1.41-2.94)	2.23 (1.49-3.34)	2.51 (1.62-3.88)	2.73 (1.73-4.31)
60-min	1.07 (0.809-1.41)	1.24 (0.938-1.64)	1.52 (1.15-2.01)	1.75 (1.32-2.34)	2.08 (1.51-2.87)	2.32 (1.66-3.27)	2.57 (1.79-3.73)	2.83 (1.89-4.23)	3.18 (2.06-4.92)	3.45 (2.18-5.44)
2-hr	1.40 (1.06-1.83)	1.62 (1.23-2.13)	1.99 (1.50-2.62)	2.29 (1.73-3.03)	2.71 (1.99-3.75)	3.02 (2.19-4.27)	3.35 (2.37-4.93)	3.75 (2.51-5.60)	4.34 (2.82-6.70)	4.85 (3.08-7.62)
3-hr	1.61 (1.23-2.11)	1.88 (1.43-2.46)	2.31 (1.76-3.04)	2.68 (2.02-3.54)	3.17 (2.34-4.39)	3.54 (2.58-5.02)	3.94 (2.81-5.82)	4.44 (2.98-6.61)	5.22 (3.39-8.03)	5.89 (3.75-9.24)
6-hr	2.00 (1.53-2.61)	2.38 (1.82-3.10)	2.98 (2.28-3.91)	3.49 (2.65-4.59)	4.18 (3.10-5.77)	4.68 (3.43-6.63)	5.25 (3.77-7.75)	5.96 (4.01-8.84)	7.09 (4.61-10.9)	8.07 (5.15-12.6)
12-hr	2.42 (1.87-3.15)	2.94 (2.26-3.82)	3.78 (2.90-4.93)	4.48 (3.41-5.87)	5.44 (4.05-7.49)	6.15 (4.51-8.66)	6.92 (4.99-10.2)	7.89 (5.33-11.7)	9.39 (6.13-14.3)	10.7 (6.85-16.6)
24-hr	2.84 (2.19-3.67)	3.50 (2.70-4.53)	4.59 (3.53-5.96)	5.49 (4.20-7.16)	6.72 (5.03-9.21)	7.64 (5.62-10.7)	8.63 (6.23-12.6)	9.86 (6.68-14.5)	11.8 (7.69-17.9)	13.4 (8.59-20.7)
2-day	3.25 (2.52-4.18)	4.03 (3.13-5.20)	5.31 (4.11-6.87)	6.38 (4.90-8.29)	7.84 (5.89-10.7)	8.91 (6.59-12.5)	10.1 (7.33-14.7)	11.6 (7.86-16.9)	13.8 (9.09-21.0)	15.8 (10.2-24.4)
3-day	3.54 (2.76-4.55)	4.39 (3.41-5.65)	5.78 (4.48-7.45)	6.93 (5.34-8.99)	8.52 (6.41-11.6)	9.68 (7.18-13.5)	11.0 (7.98-16.0)	12.6 (8.55-18.3)	15.0 (9.90-22.7)	17.2 (11.1-26.5)
4-day	3.80 (2.96-4.87)	4.69 (3.65-6.02)	6.16 (4.78-7.93)	7.38 (5.69-9.54)	9.05 (6.82-12.3)	10.3 (7.63-14.3)	11.6 (8.47-16.9)	13.3 (9.08-19.4)	15.9 (10.5-24.0)	18.2 (11.8-28.0)
7-day	4.49 (3.51-5.73)	5.48 (4.28-7.01)	7.11 (5.53-9.11)	8.46 (6.55-10.9)	10.3 (7.79-13.9)	11.7 (8.69-16.2)	13.2 (9.60-19.0)	15.0 (10.3-21.8)	17.8 (11.8-26.7)	20.2 (13.1-30.9)
10-day	5.18 (4.06-6.60)	6.23 (4.88-7.95)	7.95 (6.20-10.2)	9.38 (7.28-12.1)	11.3 (8.58-15.3)	12.8 (9.52-17.6)	14.4 (10.5-20.6)	16.2 (11.1-23.5)	19.1 (12.6-28.5)	21.4 (13.9-32.7)
20-day	7.38 (5.80-9.35)	8.52 (6.70-10.8)	10.4 (8.15-13.3)	12.0 (9.32-15.3)	14.1 (10.7-18.8)	15.7 (11.7-21.4)	17.4 (12.6-24.5)	19.3 (13.3-27.7)	21.8 (14.5-32.5)	23.9 (15.6-36.3)
30-day	9.22 (7.28-11.7)	10.4 (8.22-13.2)	12.4 (9.75-15.8)	14.1 (11.0-18.0)	16.3 (12.4-21.6)	18.1 (13.4-24.3)	19.8 (14.2-27.5)	21.6 (14.9-31.0)	24.0 (16.0-35.6)	25.8 (16.8-39.2)
45-day	11.5 (9.10-14.5)	12.8 (10.1-16.2)	14.9 (11.7-18.9)	16.7 (13.0-21.2)	19.1 (14.5-25.1)	20.9 (15.5-28.1)	22.8 (16.4-31.4)	24.6 (17.0-35.1)	26.9 (18.0-39.7)	28.5 (18.6-43.1)
60-day	13.4 (10.6-16.9)	14.8 (11.7-18.6)	17.0 (13.4-21.5)	18.8 (14.8-24.0)	21.4 (16.2-28.1)	23.4	25.3 (18.2-34.8)	27.1 (18.9-38.7)	29.4 (19.7-43.4)	31.0 (20.3-46.8)

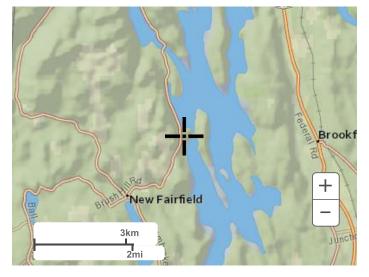

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

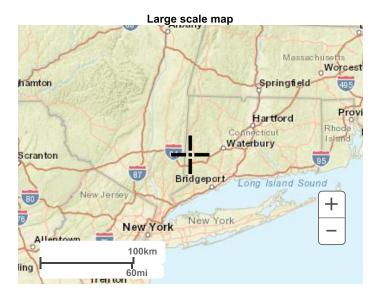
Back to Top

PF graphical


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Nov 10 21:15:28 2020

Back to Top


Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: New Fairfield, Connecticut, USA* Latitude: 41.484°, Longitude: -73.4625° Elevation: 515.81 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

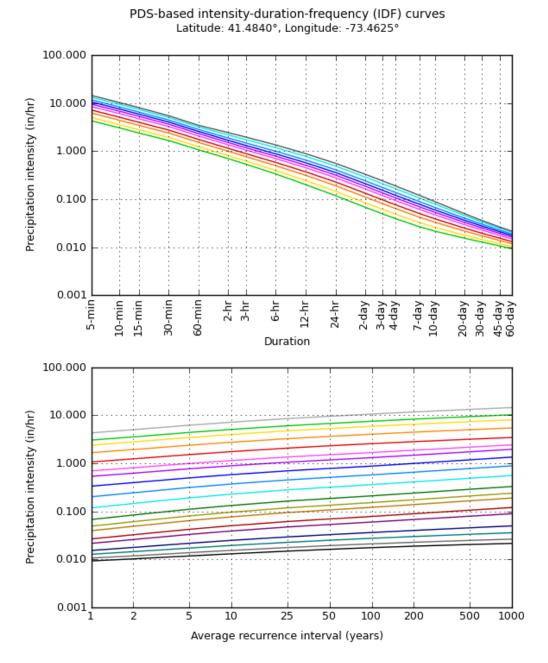
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

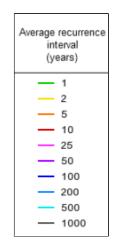
NOAA, National Weather Service, Silver Spring, Maryland

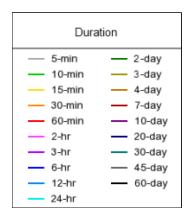
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-I	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (years)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	4.30	5.03	6.22	7.19	8.53	9.55	10.6	11.7	13.3	14.5	
	(3.26-5.68)	(3.80-6.64)	(4.68-8.23)	(5.40-9.56)	(6.23-11.8)	(6.84-13.5)	(7.39-15.4)	(7.84-17.5)	(8.59-20.5)	(9.17-22.9)	
10-min	3.05 (2.31-4.02)	3.56 (2.69-4.70)	4.39 (3.32-5.82)	5.09 (3.82-6.77)	6.04 (4.41-8.36)	6.77 (4.85-9.55)	7.52 (5.24-10.9)	8.32 (5.56-12.4)	9.41 (6.08-14.6)	10.3 (6.50-16.2)	
15-min	2.39	2.79	3.45	3.99	4.74	5.31	5.90	6.52	7.38	8.05	
	(1.81-3.15)	(2.11-3.68)	(2.60-4.56)	(3.00-5.31)	(3.46-6.56)	(3.80-7.49)	(4.11-8.58)	(4.36-9.76)	(4.77-11.4)	(5.10-12.7)	
30-min	1.67	1.94	2.38	2.75	3.26	3.65	4.04	4.46	5.02	5.46	
	(1.26-2.20)	(1.47-2.56)	(1.80-3.16)	(2.07-3.66)	(2.38-4.50)	(2.61-5.14)	(2.81-5.87)	(2.98-6.67)	(3.25-7.77)	(3.46-8.62)	
60-min	1.07	1.24	1.52	1.75	2.08	2.32	2.57	2.83	3.18	3.45	
	(0.809-1.41)	(0.938-1.64)	(1.15-2.01)	(1.32-2.34)	(1.51-2.87)	(1.66-3.27)	(1.79-3.73)	(1.89-4.23)	(2.06-4.92)	(2.18-5.44)	
2-hr	0.698	0.810	0.992	1.14	1.35	1.51	1.68	1.88	2.17	2.42	
	(0.530-0.916)	(0.615-1.06)	(0.752-1.31)	(0.863-1.52)	(0.996-1.87)	(1.09-2.14)	(1.19-2.46)	(1.26-2.80)	(1.41-3.35)	(1.54-3.81)	
3-hr	0.535	0.624	0.770	0.891	1.06	1.18	1.31	1.48	1.74	1.96	
	(0.408-0.701)	(0.476-0.819)	(0.585-1.01)	(0.673-1.18)	(0.781-1.46)	(0.858-1.67)	(0.937-1.94)	(0.993-2.20)	(1.13-2.67)	(1.25-3.08)	
6-hr	0.335	0.397	0.498	0.582	0.698	0.782	0.876	0.995	1.18	1.35	
	(0.256-0.436)	(0.303-0.518)	(0.380-0.652)	(0.442-0.766)	(0.518-0.964)	(0.572-1.11)	(0.630-1.30)	(0.670-1.48)	(0.770-1.81)	(0.860-2.11)	
12-hr	0.201	0.244	0.314	0.372	0.452	0.510	0.575	0.655	0.780	0.888	
	(0.155-0.261)	(0.187-0.317)	(0.240-0.409)	(0.283-0.487)	(0.336-0.621)	(0.374-0.719)	(0.414-0.844)	(0.442-0.967)	(0.509-1.19)	(0.568-1.38)	
24-hr	0.118	0.146	0.191	0.229	0.280	0.318	0.360	0.411	0.490	0.558	
	(0.091-0.153)	(0.113-0.189)	(0.147-0.248)	(0.175-0.298)	(0.209-0.384)	(0.234-0.446)	(0.260-0.526)	(0.278-0.604)	(0.321-0.744)	(0.358-0.864)	
2-day	0.068	0.084	0.111	0.133	0.163	0.186	0.210	0.241	0.288	0.330	
	(0.053-0.087)	(0.065-0.108)	(0.086-0.143)	(0.102-0.173)	(0.123-0.223)	(0.137-0.260)	(0.153-0.307)	(0.164-0.353)	(0.189-0.436)	(0.212-0.508)	
3-day	0.049	0.061	0.080	0.096	0.118	0.134	0.152	0.174	0.209	0.239	
	(0.038-0.063)	(0.047-0.078)	(0.062-0.104)	(0.074-0.125)	(0.089-0.161)	(0.100-0.188)	(0.111-0.222)	(0.119-0.255)	(0.137-0.316)	(0.154-0.368)	
4-day	0.040	0.049	0.064	0.077	0.094	0.107	0.121	0.139	0.166	0.190	
	(0.031-0.051)	(0.038-0.063)	(0.050-0.083)	(0.059-0.099)	(0.071-0.128)	(0.080-0.149)	(0.088-0.176)	(0.095-0.202)	(0.109-0.250)	(0.123-0.291)	
7-day	0.027	0.033	0.042	0.050	0.061	0.070	0.078	0.089	0.106	0.120	
	(0.021-0.034)	(0.025-0.042)	(0.033-0.054)	(0.039-0.065)	(0.046-0.083)	(0.052-0.096)	(0.057-0.113)	(0.061-0.130)	(0.070-0.159)	(0.078-0.184)	
10-day	0.022	0.026	0.033	0.039	0.047	0.053	0.060	0.068	0.079	0.089	
	(0.017-0.027)	(0.020-0.033)	(0.026-0.042)	(0.030-0.050)	(0.036-0.064)	(0.040-0.073)	(0.044-0.086)	(0.046-0.098)	(0.053-0.119)	(0.058-0.136)	
20-day	0.015	0.018	0.022	0.025	0.029	0.033	0.036	0.040	0.046	0.050	
	(0.012-0.019)	(0.014-0.023)	(0.017-0.028)	(0.019-0.032)	(0.022-0.039)	(0.024-0.045)	(0.026-0.051)	(0.028-0.058)	(0.030-0.068)	(0.032-0.076)	
30-day	0.013	0.014	0.017	0.020	0.023	0.025	0.027	0.030	0.033	0.036	
	(0.010-0.016)	(0.011-0.018)	(0.014-0.022)	(0.015-0.025)	(0.017-0.030)	(0.019-0.034)	(0.020-0.038)	(0.021-0.043)	(0.022-0.049)	(0.023-0.054)	
45-day	0.011	0.012	0.014	0.015	0.018	0.019	0.021	0.023	0.025	0.026	
	(0.008-0.013)	(0.009-0.015)	(0.011-0.017)	(0.012-0.020)	(0.013-0.023)	(0.014-0.026)	(0.015-0.029)	(0.016-0.033)	(0.017-0.037)	(0.017-0.040)	
60-day	0.009	0.010	0.012	0.013	0.015	0.016	0.018	0.019	0.020	0.022	
	(0.007-0.012)	(0.008-0.013)	(0.009-0.015)	(0.010-0.017)	(0.011-0.019)	(0.012-0.022)	(0.013-0.024)	(0.013-0.027)	(0.014-0.030)	(0.014-0.033)	

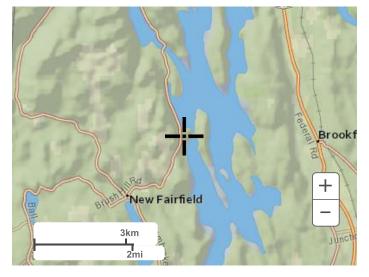

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

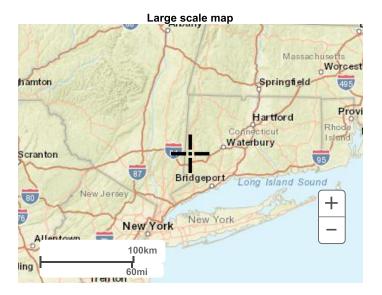
Back to Top

PF graphical


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Nov 10 21:22:41 2020

Back to Top


Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

APPENDIX D

Stormwater Quality Calculations

Total Required Water Quality Volume Calculation Worksheet

Design Point(s):	DP1, DP2, and DP3	1					
P=	1.00	inch					
		E	Breakdown of Subc	atchments			
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description
1	1P	2.70	1.58	59%	0.58	5,652	Underground Infiltration System
2	2Р	2.40	1.50	63%	0.61	5,336	Underground Infiltration System
3	3P	0.30	0.15	50%	0.50	545	Bioretention
4	4P	2.60	1.60	62%	0.60	5,699	Infiltration Trench
5	5P	1.30	0.90	69%	0.67	3,176	Infiltration Trench
Subt	total	9.30	5.73	62%	0.60	20,408	Subtotal 1
То	tal	9.30	5.73	62%	0.60	20,408	WQv

LANGAN

Underground Infiltration System Worksheet

Design Point(s):	PR DP	1										
	Enter Site Data For Drainage Area to be Treated by Practice											
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Area Impervious Rv WQV (ff ³) Precipitation (in) Description								
1	1P	2.70	1.58	0.59	0.58	5,652	1.00	Underground Infiltration System				
			Size	An Infiltratio	n Basin							
Design Volume		5,652	ft ³	WQv								
Volume Provided		7,405	ft ³	Storage Volume provided in underground infiltration system (not including pretreatment)								
Sizing √		ОК		The underground infiltration system must provide storage equal to or greater than the WQv of the contributing area.								

LANGAN

Underground Infiltration System Worksheet

Design Point(s):	PR DP	2									
	Enter Site Data For Drainage Area to be Treated by Practice										
Subcatchment Number	Subcatchment Model Number		Impervious Area (Acres)	ea Impervious Rv WQv Precipitation Description							
2	2P	2.40	1.50	0.63	0.61	5,336	1.00	Underground Infiltration System			
			Size	An Infiltratio	n Basin						
Design Volume		5,336	ft ³	WQv							
Volume Provided		6,795	ft ³	Storage Volume provided in underground infiltration system (not including pretreatment)							
Sizing √		ОК		The underground infiltration system must provide storage equal to or greater than the WQv of the contributing area.							

Underground Infiltration System Worksheet

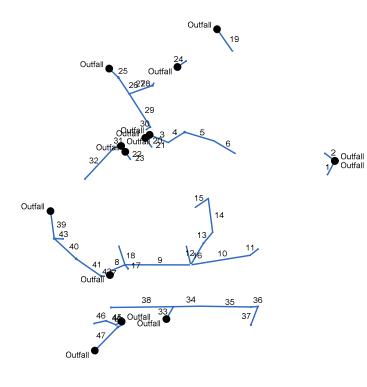
Design Point(s):	PR DP	2									
	Enter Site Data For Drainage Area to be Treated by Practice										
Subcatchment Number	Subcatchment Model Number		Impervious Area (Acres)	Impervious Rv WQv Precipitation Description							
5	5P	1.30	0.90	0.69	0.67	3,176	1.00	Infiltration Trench			
	•		Size	An Infiltratio	n Basin	•	•				
Design Volume		3,176	ft ³	WQv							
Volume Provided		5140.00	ft ³	Storage Volume provided in underground infiltration system (not including pretreatment)							
Sizing √		ОК		The underground infiltration system must provide storage equal to or greater than the WQv of the contributing area.							

LANGAN

Bioretention Worksheet

(For use on HSG C or D Soils with underdrains) Af=WQv*(df)/[k*(hf+df)(tf)]

- where: Af
 - Required Surface Area (ft²) Water Quality Volume (ft³)
 - WQv df Depth of the Soil Medium (ft)
 - hf Average height of water above the planter bed (ft)
 - tf The Design Time to Filter the Treatment Volume Through the Filter Media (days)
 - k Hydraulic conductivity (ft/day)


Design Point(s):	DP1, DP2,	and DP3						
		Enter Site	Data For Drain	age Area to b	e Treated by	Practice		
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description
3	3P	0.30	0.15	0.50	0.50	545	1.00	Bioretention
Enter Impervious of Rooftops	Area Reduced by [Disconnection		50%	0.50	545	< <wqv after="" an<br="">Disconnected F</wqv>	
Enter the portion	of the WQv that is	not reduced fo			oractice.		ft ³	
			Soi	I Information				
Soil Group			C					
Using Underdrains	s?		yes	Okay				
			Pr	etreatment	2			
WQv				545	ft ³			
Pretreatment Sizir	-			25%	of WQv			
Required Pretreat				136	ft ³	_		
Pretreatment Prov	vided			550	ft ³			
Pretreatment tech	nniques utilized			Other				
						-		
			Calculate the	e Minimum Fil	ter Area			
WQv			Calculate the		ter Area 45	ft ³		
WQv Media Type				54		ft ³		
	ia			54 Bioreten	45	ft ³	2.5 ft to 4 ft	
Media Type				54 Bioreten	45 Ition Soil .5		2.5 ft to 4 ft	
Media Type Depth of Soil Med	tivity		 df	54 Bioreten 2	45 ition Soil .5 .5	ft	2.5 ft to 4 ft typically 0.25 ft	
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time	tivity Ponding		 df k hf tf	52 Bioreten 2. 0. 0 2.	45 ntion Soil .5 .5 25 00	ft ft/day ft days		
Media Type Depth of Soil Med Hydraulic Conduct Average Height of	tivity Ponding		 df k hf tf Af	54 Bioreten 2 0. 0 2.1 49	45 ntion Soil .5 .5 25 00 95	ft ft/day ft		· · · · · · · · · · · · · · · · · · ·
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar	tivity Ponding		df k hf tf Af Determine A	54 Bioreten 2 0 0 2 49 ctual Bioreten	45 ntion Soil .5 .5 25 00 95	ft ft/day ft days		· · · · · · · · · · · · · · · · · · ·
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width	tivity Ponding		 df k hf tf Af Determine Ac 8	54 Bioreten 2 0. 0 2.0 49 ctual Bioreten ft	45 ntion Soil .5 .5 25 00 95	ft ft/day ft days		· · · · · · · · · · · · · · · · · · ·
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width Filter Length	tivity Ponding		 df k hf tf Af Determine Ad 8 100	54 Bioreten 2 0. 0 2.1 45 ctual Bioreten <i>ft</i> <i>ft</i>	45 5 5 25 00 55 tion Area	ft ft/day ft days		
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width Filter Length Filter Area	tivity Ponding rea		 df k hf tf Af Determine Ac 8 100 800	54 Bioreten 2 0 2 49 ctual Bioreten <i>ft</i> <i>ft</i> <i>ft</i>	45 ntion Soil .5 .5 25 00 95	ft ft/day ft days		· · · · · · · · · · · · · · · · · · ·
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width Filter Length	tivity Ponding rea		 <i>df</i> <i>k</i> <i>hf</i> <i>tf</i> <i>Af</i> Determine Ac 8 100 800 880	54 Bioreten 2. 0. 0. 2. 49 ctual Bioreten <i>ft</i> <i>ft</i> <i>ft</i> <i>ft</i> <i>ft</i>	45 15 15 25 00 05 tion Area OK	ft ft/day ft days		
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width Filter Length Filter Area Actual Volume Pro	tivity Ponding rea		 <i>df</i> <i>k</i> <i>hf</i> <i>tf</i> <i>Af</i> Determine Ac 8 100 800 880 Determ	54 Bioreten 2. 00 0 2. 49 Ctual Bioreten ft ft ft ft ft ft ft anne Underdra	45 15 15 25 00 05 tion Area OK	ft ft/day ft days		
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width Filter Length Filter Area Actual Volume Pro Underdrain Grave	tivity Ponding rea ovided I Bed With		 <i>df</i> <i>k</i> <i>hf</i> <i>tf</i> <i>Af</i> Determine Ac 8 100 800 880 Determ 3	54 Bioreten 2. 0. 2. 49 50 50 50 50 50 50 50 50 50 50 50 50 50	45 15 15 25 00 05 tion Area OK	ft ft/day ft days		
Media Type Depth of Soil Med Hydraulic Conduct Average Height of Filter Time Required Filter Ar Filter Width Filter Length Filter Area Actual Volume Pro	tivity Ponding rea ovided I Bed With f underdrain		 <i>df</i> <i>k</i> <i>hf</i> <i>tf</i> <i>Af</i> Determine Ac 8 100 800 880 Determ	54 Bioreten 2. 00 0 2. 49 Ctual Bioreten ft ft ft ft ft ft ft anne Underdra	45 15 15 25 00 05 tion Area OK	ft ft/day ft days		· · · · · · · · · · · · · · · · · · ·

APPENDIX E

Stormwater Conveyance System Calculations

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Project File: New Fairfield-revised.stm	Number of lines: 48	Date: 11/11/2020

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x C		Тс		Rain			Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	49.913		0.18	0.90	0.16	0.16	6.0	6.0	7.9	1.28	6.46	3.46	12	2.80	933.60	935.00	934.08	935.48	943.76	944.91	MH302 - CCB300
2	End	39.980	0.34	0.34	0.90	0.31	0.31	6.0	6.0	7.9	2.41	7.22	4.35	12	3.50	933.60	935.00	934.26	935.66	943.76	943.86	MH302 - CCB301
3	End	63.642	0.09	1.08	0.40	0.04	0.54	17.0	17.9	4.5	2.41	6.84	4.35	12	3.14	924.90	926.90	925.56	927.56	927.75	931.58	OUTFALL - YD20
4	3	61.820	0.00	0.99	0.00	0.00	0.50	17.0	17.5	4.5	2.28	10.91	4.15	12	7.99	926.89	931.83	927.56	932.48	931.58	943.24	YD205 - MH206
5	4	97.000	0.63	0.99	0.40	0.25	0.50	17.0	17.0	4.6	2.32	7.72	6.43	12	4.00	935.40	939.28	935.78	939.93	943.24	943.96	MH206 - YD207
6	5	77.503	0.36	0.36	0.70	0.25	0.25	7.0	7.0	7.3	1.85	3.87	3.67	12	1.01	939.28	940.06	939.93	940.64	943.96	944.16	YD207 - YD208
7	End	12.228	0.04	2.78	0.90	0.04	1.90	12.0	12.2	5.6	10.57	14.55	6.73	18	1.64	922.40	922.60	923.65	923.85	927.10	931.12	OUTFALL - WQS-
8	7	51.814	0.37	2.74	0.70	0.26	1.87	5.0	12.0	5.6	10.44	12.24	6.66	18	1.16	922.60	923.20	923.85	924.44	931.12	930.74	WQS112A - CCB
9	8	208.786	0.33	1.58	0.50	0.17	0.97	5.0	11.3	5.8	5.62	8.93	5.07	15	1.63	923.20	926.60	924.44	927.56	930.74	931.79	CCB112 - CCB10
10	9	190.363	0.16	0.28	0.80	0.13	0.24	5.0	5.5	8.2	1.94	8.10	6.23	12	4.41	928.30	936.70	928.63	937.29	931.79	940.26	CCB-112 - CCB11
11	10	32.176	0.12	0.12	0.90	0.11	0.11	5.0	5.0	8.5	0.92	8.87	2.51	12	5.28	936.70	938.40	937.29	938.80	940.26	941.76	CCB110 - CCB11
12	9	79.129	0.07	0.58	0.40	0.03	0.22	10.0	10.5	6.0	1.32	3.88	2.09	12	1.01	926.20	927.00	927.56	927.64	931.79	931.50	CCB105 - CLCB1
13	12	46.195	0.15	0.51	0.40	0.06	0.19	10.0	10.0	6.2	1.18	4.01	2.72	12	1.08	927.00	927.50	927.69	927.96	931.50	931.51	CLCB106 - CLCB
14	13	108.035	0.32	0.36	0.30	0.10	0.13	7.0	8.3	6.8	0.89	4.07	2.82	12	1.11	927.50	928.70	927.96	929.10	931.51	933.08	CLCB107 - CLCB
15	14	49.593	0.04	0.04	0.90	0.04	0.04	6.0	6.0	7.9	0.28	3.87	1.60	12	1.01	928.70	929.20	929.10	929.42	933.08	932.98	CLCB108 - YD10
16	9	60.556	0.39	0.39	0.90	0.35	0.35	6.0	6.0	7.9	2.76	2.55	5.07	10	1.16	928.30	929.00	929.13	929.95	931.79	933.00	CCB105 - RL
17	8	15.798	0.37	0.37	0.70	0.26	0.26	5.0	5.0	8.5	2.20	5.32	5.32	12	1.90	927.70	928.00	928.15	928.63	930.74	931.00	CCB112 - CCB11
18	8	62.139	0.42	0.42	0.90	0.38	0.38	5.0	5.0	8.5	3.22	3.43	6.64	10	2.09	927.70	929.00	928.34	929.77	930.74	933.00	CCB112 - RL
19	End	84.414	0.10	0.10	0.90	0.09	0.09	5.0	5.0	8.5	0.77	1.67	3.00	10	0.50	929.16	929.58	929.55	929.99	931.03	933.00	OUTFALL - RL
20	End	27.840	0.23	0.71	0.40	0.09	0.52	12.0	12.0	5.6	2.93	10.60	4.75	12	7.54	924.90	927.00	925.63	927.73	927.66	933.01	OUTFALL - YD20
21	20	7.709	0.48	0.48	0.90	0.43	0.43	5.0	5.0	8.5	3.68	6.04	7.05	10	6.49	927.00	927.50	927.73	928.29	933.01	933.00	YD204 - RL
22	End	23.701	0.06	0.61	0.30	0.02	0.51	7.0	7.0	7.3	3.77	9.71	5.43	12	6.33	924.90	926.40	925.73	927.23	933.00	933.01	OUTFALL -YD205
Proje	ct File:	New Fa	uirfield-re	evised.st	m	1	1		1	1	1	1	1	1		Numbe	r of lines: 4	.8	<u>I</u>	Run Da	te: 11/11/2	2020
ΝΟΤΙ	ES:Inte	nsity = 3	8.74 / (I	nlet time	+ 3.60)	^ 0.70;	Return p	eriod =Y	′rs. 25 ;	c = cir	e = ellip	b = box				1				1		

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	Area x C		Тс		Total	Сар	Vel	Pipe		Invert El	əv	HGL Elev		Grnd / Rim Elev		Line ID
Line	То		Incr	Total	-coeff	Incr	Total	Inlet Syst		flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
23	22	5.353	0.55	0.55	0.90	0.50	0.50	5.0	5.0	8.5	4.21	5.27	5.96	12	1.87	926.40	926.50	927.23	927.36	933.01	933.00	YD205A - RL
24	End	33.208	1.30	1.30	0.70	0.91	0.91	7.7	7.7	7.0	6.39	4.23	8.18	12	1.20	926.30	926.70	927.26	928.14	926.91	930.71	OUTFALL - WQU
25	End	40.834	0.00	0.70	0.00	0.00	0.21	12.0	12.6	5.4	14.29	11.26	8.23	18	0.98	923.00	923.40	924.39	925.06	922.95	932.80	OUTFALL - MH20
26	25	62.103	0.70	0.70	0.30	0.21	0.21	12.0	12.5	5.5	14.30	7.91	8.09	18	0.48	923.40	923.70	925.33	926.31	932.80	932.50	MH201 - CLCB20
27	26	78.433	0.00	0.00	0.00	0.00	0.00	7.0	12.0	0.0	4.45	6.89	5.67	12	3.19	923.70	926.20	928.52	929.56	932.50	935.12	CLCB202 - OCS2
28	27	8.373	0.00	0.00	0.00	0.00	0.00	12.0	12.0	0.0	4.45	4.22	5.67	12	1.19	926.20	926.30	929.92	930.03	935.12	934.00	OCS200 - UG SY
29	26	124.633	0.00	0.00	0.00	0.00	0.00	12.0	12.1	0.0	8.70	8.53	4.92	18	0.56	923.70	924.40	928.52	929.25	932.50	934.94	CLCB202 - OCS2
30	29	16.102	0.00	0.00	0.00	0.00	0.00	12.0	12.0	0.0	8.70	8.96	4.92	18	0.62	924.40	924.50	929.62	929.72	934.94	934.00	OCS203 - UG SY
31	End	24.458	0.12	0.59	0.90	0.11	0.44	12.0	13.0	5.4	2.34	6.04	4.30	12	2.45	924.90	925.50	925.55	926.15	926.06	933.83	OUTFALL - CCB2
32	31	135.107	0.47	0.47	0.70	0.33	0.33	12.0	12.0	5.6	1.84	3.93	3.65	12	1.04	925.50	926.90	926.15	927.48	933.83	930.12	CCB212 - CCB21
33	End	45.243	0.02	1.58	0.90	0.02	1.09	15.1	16.8	4.6	5.07	16.44	5.28	15	5.53	919.50	922.00	920.41	922.91	923.06	930.00	OUTFALL - WQS
34	33	84.783	0.05	1.16	0.80	0.04	0.72	15.1	16.3	4.7	3.38	8.32	3.99	15	1.42	922.00	923.20	922.91	923.94	930.00	931.39	CCB104 - WQS13
35	34	160.271	0.27	1.11	0.60	0.16	0.68	15.1	15.3	4.9	3.31	6.99	4.40	15	1.00	923.20	924.80	923.94	925.53	931.39	930.80	CCB104 - CCB-11
36	35	22.616	0.37	0.84	0.50	0.19	0.51	15.1	15.1	4.9	2.53	8.06	3.71	15	1.33	924.80	925.10	925.53	925.74	930.80	931.20	CCB114 - CCB11
37	36	62.850	0.47	0.47	0.70	0.33	0.33	12.0	12.0	5.6	1.84	7.38	3.28	15	1.11	925.10	925.80	925.74	926.34	931.20	928.89	CCB115 - CCB-11
38	33	198.230	0.40	0.40	0.90	0.36	0.36	5.0	5.0	8.5	3.06	5.27	4.46	12	1.87	922.00	925.70	922.91	926.45	930.00	929.00	WQS103 - CCB11
39	End	87.870	0.00	0.00	0.00	0.00	0.00	12.0	47.1	0.0	9.53	8.80	7.97	15	1.58	918.41	919.80	919.58	920.97	919.97	924.90	OUTFALL - MH10
40	39	95.200	0.00	0.00	0.00	0.00	0.00	12.0	12.2	0.0	9.52	8.17	7.76	15	1.37	919.80	921.10	921.95	923.71	924.90	931.88	MH100 - MH101
41	40	96.162	0.00	0.00	0.00	0.00	0.00	12.0	12.0	0.0	9.52	7.48	7.76	15	1.14	921.10	922.20	923.87	925.65	931.88	931.70	MH101 - OCS102
42	41	10.411	0.00	0.00	0.00	0.00	0.00	12.0	12.0	0.0	9.52	5.35	12.12	12	1.92	922.20	922.40	926.24	926.88	931.70	932.00	OCS102 - UG SY
43	39	28.639	0.00	0.00	0.00	0.00	0.00	9.6	9.6	0.0	0.01	8.83	0.48	12	5.24	921.50	923.00	921.95	923.04	924.90	928.00	MH-100 - OCS99
44	End	21.048	0.50	1.06	0.80	0.40	0.74	7.0	7.4	7.1	5.26	7.98	6.92	12	4.28	919.50	920.40	920.43	921.33	923.05	925.70	OUTFALL - WQS
Proje	ct File:	New Fa	airfield-re	evised.st	tm	1	1	1	1	1		1	1		1	Number	r of lines: 4	18	1	Run Da	te: 11/11/	2020
NOT	ES:Inte	nsity = 3	8.74 / (nlet time	e + 3.60)	^ 0.70;	Return n	eriod =Y	′rs. 25:	c = cir	e = ellip	b = box				1				1		

Storm Sewer Tabulation

Incr Total Incr Incr Total Incr	Station Len Drng Area		rea	Rnoff			Тс		Rain	Total Cap flow full		Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID		
N N	Line			Incr	Total		Incr	Total	Inlet	Syst	(1)	TIOW	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
46 45 38.98 0.50 0.50 0.50 0.00 0.00 100 10.0 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 11.1 <td< th=""><th></th><th></th><th>(ft)</th><th>(ac)</th><th>(ac)</th><th>(C)</th><th></th><th></th><th>(min)</th><th>(min)</th><th>(in/hr)</th><th>(cfs)</th><th>(cfs)</th><th>(ft/s)</th><th>(in)</th><th>(%)</th><th>(ft)</th><th>(ft)</th><th>(ft)</th><th>(ft)</th><th>(ft)</th><th>(ft)</th><th></th></td<>			(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
46 45 38.98 0.50 0.50 0.50 0.00 0.00 100 10.0 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 11.1 <td< td=""><td>45</td><td>44</td><td>34 286</td><td>0.06</td><td>0.56</td><td>0.60</td><td>0.04</td><td>0.34</td><td>7.0</td><td>72</td><td>72</td><td>2 43</td><td>5 51</td><td>3 78</td><td>12</td><td>2 04</td><td>920 40</td><td>921 10</td><td>921 33</td><td>921 77</td><td>925 70</td><td>925 30</td><td>WOS118 - CCB11</td></td<>	45	44	34 286	0.06	0.56	0.60	0.04	0.34	7.0	72	72	2 43	5 51	3 78	12	2 04	920 40	921 10	921 33	921 77	925 70	925 30	WOS118 - CCB11
47 End 10.4 958 0.00 0.00 0.00 0.00 15.1 15.1 0.0 11.77 11.04 9.67 15 3.01 919.20 917.25 920.41 920.20 926.50 924.32 0CTFALL-OCS1 48 47 20.88 0.00 0.00 0.00 10.0 15.1 15.1 0.0 11.77 11.04 9.67 15 2.49 919.20 919.20 919.20 920.41 920.40 </td <td>46</td> <td></td>	46																						
47 20.889 0.00 0.00 0.00 0.00 15.1 15.1 0.0 11.77 11.04 9.67 15 2.49 919.72 920.41 920.93 926.50 924.32 OCS121-UG SY 48 47 20.89 0.00 0.00 0.00 15.1 15.1 0.0 11.77 11.04 9.67 15 2.49 919.72 920.41 920.93 926.50 924.32 OCS121-UG SY 48 47 2.49 1.4 1.4 1.4 9.67 1.5 2.49 919.72 920.41 920.93 926.50 924.32 OCS121-UG SY 48 1.4 1	47																						
	48																						
Number of meet-revised.sum	Proje	ect File:	New Fa	iirfield-re	evised.st	m											Numbe	r of lines: 4	18		Run Da	te: 11/11/	2020