BENJAMIN V. DOTO, III, P.E., LLC CONSULTING CIVIL ENGINEER

248 MAIN STREET, SUITE 3A DANBURY, CT 06810 PHONE: 203/743-3424 E-MAIL: ben@dotocivil.com

PROJECT REPO	RT: St. Edward the Confessor Church 21 Brush Hill Road and 1 Margerie Dr, New Fairfield, CT					
March 11, 2024						
<u>SUMMARY</u>						
Scope:	The proposal includes site, parking, and storm water improvements to the existing parking lots serving the church. The existing building will remain unchanged.					
	The proposal will remove 33 existing parking spaces in and along the Town right-of-way and replace them on-site. The total site parking will increase from 226 to 233 total spaces. Improvements to the driveways are also proposed with changes to the existing driveway aprons and the installation of a temporary egress-only driveway.					
	Landscape and lighting improvements compliment the changes in and around the parking areas.					
Storm Drainage:	The proposed site improvements include a small increase in impervious area, associated with the parking expansion. A new stormwater management and detention system is proposed to replace and upgrade the existing on-site drainage system. The system is designed to mitigate increases in peak storm discharge levels for the 25-year storm event.					
	The pre- and post-developed peak discharge levels for the project area are 36.4 cfs and 33.8 cfs, respectively. Attachment A of this report contains details of the drainage analysis and design.					
Impervious Areas:	The site currently contains no water quality or detention measures, and stormwater is discharged untreated directly to the Town system.					
	The proposal includes a water quality unit and detention system that treats stormwater flows and reduces the effective impervious area to 8.3% and 0% for the upper and lower lots, respectively. This complies with the Town requirements of 10% maximum effective impervious area.					
Wetlands:	The lower lot contains wetlands. Activities are proposed in both the regulated area and upland areas. No direct wetland impacts are proposed. Outlet improvements (armored channel at discharge) and the removal of dead trees within the lower swale are also proposed.					

ATTACHMENT A

Drainage Analysis / Design & Water Quality Sizing & Stormwater Management Plan Compliance

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: A1-p	Runoff Area=262,308 sf 37.10% Impervious Runoff Depth>3.91" Tc=6.0 min CN=84 Runoff=27.31 cfs 1.963 af
Subcatchment2S: A2-p	Runoff Area=91,937 sf 24.45% Impervious Runoff Depth>3.61" Tc=5.0 min CN=81 Runoff=9.22 cfs 0.635 af
Subcatchment3S: A5	Runoff Area=114,822 sf 8.70% Impervious Runoff Depth>3.31" Tc=6.0 min CN=78 Runoff=10.25 cfs 0.727 af
Subcatchment4S: A3	Runoff Area=125,538 sf 68.37% Impervious Runoff Depth>4.66" Tc=5.0 min CN=91 Runoff=15.50 cfs 1.119 af
Subcatchment 5S: A4	Runoff Area=21,948 sf 55.83% Impervious Runoff Depth>4.33" Tc=5.0 min CN=88 Runoff=2.57 cfs 0.182 af
Subcatchment6S: A6	Runoff Area=24,503 sf 92.04% Impervious Runoff Depth>5.23" Tc=5.0 min CN=96 Runoff=3.21 cfs 0.245 af
Subcatchment7S: A7	Runoff Area=67,434 sf 0.13% Impervious Runoff Depth>3.12" Tc=5.0 min CN=76 Runoff=5.88 cfs 0.402 af
Pond 1P: MH#4	Peak Elev=732.91' Inflow=18.71 cfs 1.364 af Primary=5.87 cfs 1.088 af Secondary=12.83 cfs 0.276 af Outflow=18.71 cfs 1.364 af
Pond 2P: 4x4-galleries	Peak Elev=732.85' Storage=7,341 cf Inflow=5.87 cfs 1.088 af Discarded=0.47 cfs 0.411 af Primary=2.92 cfs 0.671 af Outflow=3.39 cfs 1.083 af
Link 1L: pre-total	Inflow=36.43 cfs 2.598 af Primary=36.43 cfs 2.598 af
Link 2L: stream-outlet	Inflow=15.30 cfs 0.947 af Primary=15.30 cfs 0.947 af
Link 3L: post-total	Inflow=33.84 cfs 2.259 af Primary=33.84 cfs 2.259 af
Link 4L: WQ#1	Inflow=5.87 cfs 1.088 af Primary=5.87 cfs 1.088 af

Total Runoff Area = 16.265 acRunoff Volume = 5.274 afAverage Runoff Depth = 3.89"64.64% Pervious = 10.514 ac35.36% Impervious = 5.750 ac

Summary for Subcatchment 1S: A1-pre

Runoff = 27.31 cfs @ 12.09 hrs, Volume= 1.963 af, Depth> 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

Area (sf)	CN	Description					
165,004	76	Woods/gras	ss comb., F	Fair, HSG C			
97,304	98	Paved park	ing, HSG C				
262,308	84	Weighted A	verage				
165,004		62.90% Pervious Area					
97,304		37.10% Impervious Area					
Tc Length	Slop	e Velocity	Capacity	Description			
(min) (feet)) (ft/1	ft) (ft/sec)	(cfs)				
6.0				Direct Entry,			
				-			

Subcatchment 1S: A1-pre

Hydrograph

Summary for Subcatchment 2S: A2-pre

Runoff = 9.22 cfs @ 12.07 hrs, Volume= 0.635 af, Depth> 3.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

A	rea (sf)	CN	Description			
	69,463	76	Woods/gras	s comb., F	Fair, HSG C	
	22,474	98	Paved park	ing, HSG C		
	91,937	81	Weighted A	verage		
	69,463 75.55% Pervious Area					
	22,474		24.45% Imp	pervious Are	ea	
Та	Longth	Slope	Volocity	Canacity	Description	
IC (maine)	Length	Siope		Capacity	Description	
(min)	(leet)	(π/π) (IL/SEC)	(CIS)		
5.0					Direct Entry,	

Subcatchment 2S: A2-pre

Hydrograph

Summary for Subcatchment 3S: A5

Runoff = 10.25 cfs @ 12.09 hrs, Volume= 0.727 af, Depth> 3.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

Ar	rea (sf)	CN	Description					
1	04,829	76	Woods/gras	ss comb., F	Fair, HSG C			
	9,993	98	Paved park	ing, HSG C				
1	14,822	78	Weighted A	verage				
1	04,829		91.30% Pervious Area					
	9,993		8.70% Impervious Area					
Tc	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			
					•			

Subcatchment 3S: A5

Hydrograph

11

10-

9-

8-7-

0 1 2

Flow (cfs)

Runoff Volume=1.119 af

5

6

9 10

8

11 12 13

Time (hours)

14 15 16 17 18 19 20

21

22 23

24

Runoff Depth>4.66"

Tc=5.0 min

้่ง

4

CN=91

Summary for Subcatchment 4S: A3

Runoff = 15.50 cfs @ 12.07 hrs, Volume= 1.119 af, Depth> 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

Are	ea (sf)	CN	Description					
3	9,713	76	Woods/gras	s comb., F	air, HSG C			
8	5,825	98	Paved park	ing, HSG C	· ·			
12	25,538	91	Weighted A	verage				
3	9,713		31.63% Per	vious Area				
8	5,825		68.37% Imp	pervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry,			
				Subcat	tchment 4S: A3	5		
				Hydrog	graph			
17		 						- Runoff
16		 			<u>5.50 CIS</u> +++	$\begin{array}{cccc} -+ \vdash &\vdash &\vdash & -\\ 1 & 1 & 1 & 1 \end{array}$	- 	Runoir
15	Type I	ll 24-l	יין אר אין א אר אר אין אר א	·]]			· _ 	
14	25-yr-f	air-co	o Rainfall	=5.70"		-+		
12 -	¹² Runoff Area=125.538 sf							

Summary for Subcatchment 5S: A4

Runoff = 2.57 cfs @ 12.07 hrs, Volume= 0.182 af, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

Area (sf) CN Description
9,694 76 Woods/grass comb., Fair, HSG C
12,254 98 Paved parking, HSG C
21,948 88 Weighted Average
9,094 44.17% Pervious Area
12,254 55.65 % Impervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment 5S: A4
Hydrograph
Image: Symplectic structure 2.57 cfs Image: Symplectic structure

Summary for Subcatchment 6S: A6

Runoff = 3.21 cfs @ 12.07 hrs, Volume= 0.245 af, Depth> 5.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

1,951 76 Woods/grass comb., Fair, HSG C 22,552 98 Paved parking, HSG C	
24,50396Weighted Average1,9517.96% Pervious Area22,55292.04% Impervious Area	
TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)	
5.0 Direct Entry,	
Subcatchment 6S: A6	
Hydrograph	
(g) 2 Type III-24-hr 25-yr-fair-co Rainfall=5.70" Runoff Area=24,503 sf Runoff Volume=0.245 af Runoff Depth>5.23" Tc=5.0 min CN=96	J

Time (hours)

Summary for Subcatchment 7S: A7

Runoff = 5.88 cfs @ 12.08 hrs, Volume= 0.402 af, Depth> 3.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr-fair-co Rainfall=5.70"

A	ea (sf) CN Description	
	67,346 76 Woods/grass comb., Fair, HSG C	
	6090Paved parking, HSG C67,43476Weighted Average67,34699.87% Pervious Area880.13% Impervious Area	
Tc (min)	Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs)	n
5.0	Direct Ent	try,
	Subcatchment 7	7S: A7
	Hydrograph	
-	5.88 cfs	- Runoff
	Type III 24-hr 25-yr-fair-co Rainfall=5.70" Runoff Area=67,434 sf Runoff Volume=0.402 af Runoff Depth>3.12" Tc=5.0 min CN=76	

Time (hours)

Summary for Pond 1P: MH#4

Inflow Area =	3.444 ac, 72.23% Impervious, Inflow	Depth > 4.75" for 25-yr-fair-co event
Inflow =	18.71 cfs @ 12.07 hrs, Volume=	1.364 af
Outflow =	18.71 cfs @_ 12.07 hrs, Volume=	1.364 af, Atten= 0%, Lag= 0.0 min
Primary =	5.87 cfs @ 12.07 hrs, Volume=	1.088 af
Secondary =	12.83 cfs $\overline{@}$ 12.07 hrs, Volume=	0.276 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 732.91' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	730.00'	12.0" Round Culvert
	-		L= 6.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 730.00' / 729.80' S= 0.0333 '/' Cc= 0.900
			n= 0.011 cpp-smooth, Flow Area= 0.79 sf
#2	Secondary	731.00'	24.0" Round Culvert
			L= 6.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 731.00' / 730.80' S= 0.0333 '/' Cc= 0.900
			n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=5.87 cfs @ 12.07 hrs HW=732.91' (Free Discharge)

Secondary OutFlow Max=12.82 cfs @ 12.07 hrs HW=732.91' (Free Discharge) 2=Culvert (Barrel Controls 12.82 cfs @ 5.32 fps)

Pond 1P: MH#4

Summary for Pond 2P: 4x4-galleries

Inflow Area	ı =	3.444 ac, 7	2.23% Impe	ervious, In	nflow Depth >	3.79"	for 25-yr	-fair-co event
Inflow	=	5.87 cfs @	12.07 hrs,	Volume=	1.088	af		
Outflow	=	3.39 cfs @	12.48 hrs,	Volume=	1.083	af, Atte	en= 42%,	Lag= 24.3 min
Discarded	=	0.47 cfs @	12.48 hrs,	Volume=	0.411	af		-
Primary	=	2.92 cfs @	12.48 hrs,	Volume=	0.671	af		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 732.85' @ 12.48 hrs Surf.Area= 3,072 sf Storage= 7,341 cf

Plug-Flow detention time= 31.6 min calculated for 1.082 af (99% of inflow) Center-of-Mass det. time= 28.4 min (818.6 - 790.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	729.00'	2,704 cf	6.40'W x 480.00'L x 4.50'H Field A
			13,824 cf Overall - 7,065 cf Embedded = 6,759 cf x 40.0% Voids
#2A	729.50'	5,321 cf	Concrete Galley 4x4x4 x 120 Inside #1
			Inside= 42.0"W x 43.0"H => 12.67 sf x 3.50'L = 44.3 cf
			Outside= 52.8"W x 48.0"H => 14.72 sf x 4.00'L = 58.9 cf
		8,025 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	729.50'	12.0" Round Culvert
			L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 729.50' / 729.20' S= 0.0100 '/' Cc= 0.900
			n= 0.011 PVC, smooth interior, Flow Area= 0.79 sf
#2	Discarded	729.00'	3.000 in/hr Exfiltration over Wetted area
#3	Device 1	729.50'	8.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.47 cfs @ 12.48 hrs HW=732.85' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.47 cfs)

Primary OutFlow Max=2.92 cfs @ 12.48 hrs HW=732.85' (Free Discharge)

1=Culvert (Passes 2.92 cfs of 5.04 cfs potential flow)

1-3=Orifice/Grate (Orifice Controls 2.92 cfs @ 8.36 fps)

211-drainage-r0

Prepared by {enter your company name here} HydroCAD® 10.00-22 s/n 02462 © 2018 HydroCAD Software Solutions LLC

Pond 2P: 4x4-galleries

Summary for Link 1L: pre-total

Inflow Are	ea =	8.132 ac, 33	3.81% Imper	vious,	Inflow Depth >	3.83	3" for 25-yr-fair-co event
Inflow	=	36.43 cfs @	12.08 hrs, V	/olume=	= 2.598	af	
Primary	=	36.43 cfs @	12.08 hrs, V	/olume=	= 2.598	af, /	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link 1L: pre-total

Summary for Link 2L: stream-outlet

Page 14

Inflow Ar	ea =	3.444 ac, 72	2.23% Impe	ervious,	Inflow Depth =	3.3	0" for 25-yr-fair-co event
Inflow	=	15.30 cfs @ 1	12.07 hrs,	Volume	= 0.947	' af	
Primary	=	15.30 cfs @ 1	12.07 hrs,	Volume	= 0.947	′ af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link 2L: stream-outlet

Summary for Link 3L: post-total

Inflow A	\rea =	8.132 ac, 3	86.90% Impervious,	Inflow Depth > 3.3	33" for 25-yr-fair-co event
Inflow	=	33.84 cfs @	12.08 hrs, Volume	= 2.259 af	
Primary	/ =	33.84 cfs @	12.08 hrs, Volume	= 2.259 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link 3L: post-total

Summary for Link 4L: WQ#1

Inflow Ar	rea =	3.444 ac, 72.23% Impervious, Infl	ow Depth > 3.79"	for 25-yr-fair-co event
Inflow	=	5.87 cfs @ 12.07 hrs, Volume=	1.088 af	
Primary	=	5.87 cfs @ 12.07 hrs, Volume=	1.088 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link 4L: WQ#1

19 1-30-24 DRAWALE AND BN ST. EDS OBJECTIVE . DETERMINE PREF TO POST DEVELOPED PEAK FROWS FOR ADOPOSED ANALING EXPANSION. SIZE DETENTION, PIPING & WARD QUILITY MEASURES IN ACCORDANCE WITH TOWN OF NEW FRIEFIELDS "STORM WATER MEMT." PLAS" REQUIREMENTS. POFUZENCE: OCIVIL SITURTS (01, CO1.1, CO2 & COS (JAN 24) (SITE, GRADING & UTILITY, & DATIVALE MADS) · IMPROVENENT LOCATION SWRING (NOV 2023) · FAIRFIELD COUNTY SOL SWAM Z/1981 · ITADROCAD MODEL FOR STORM RUTING, ITADROCAAPHS & DETENTION SIZING - 25 YEAR (TIPE II 24-112 MWFALL = 5.7") · PATIONAL METHON (FOR SUB SATOSS & P. DE FLOW) Q= LiA Q: Frow (CFS) C = RINDER CUSER 0,9 = IMPERVINS 0.3= PORVING E = INTENSIM (IN/IM) 6.7 1 / HAZ (TE = 5 MIN) A= MEA (AL) · TR-55 Fib. 3-1 For any AND FROM VELOCITIES & TOROCOMPAY · MANNING'S EQN (FOR P. AE CAPIZITY) Q(GS) = A.V = A. 1.49 Rh 2/3 51/2 EXISTING COMMITONS: A, = 262,308 4,2 (URDW2 ARCA) A, (IMP) = 97,304 Fr2 (N=98

42-381 50 SHEETS EYE-EASE" - 5 SO 42-382 100 SHEETS EYE-EASE" - 5 SO 42-389 200 SHEETS EYE-EASE" - 5 SO

9/19 1-30-24 BWS 55 605 DISTINGE ANAL, EXISTING WID A, (702) = 165,004 AZ CN=76 woods / Longs, FAIR HSG "L' Soils ADE Ud, WXC, WZB&WXB NU HSG ALL THE "C'I USE THRE "L' FOR ANALYSIS ZN, = 84 the = 5.9 mins USE the = 6,0 min (SEE TE WORRSHEET) Q_= ZT, 3 CFS (SEE HYDRACHD MUDEL) A2 = 91,937 A2 (LOWER APTA) AZ(IMP) = 22,474 Fr2 (N= 98 Az (AN) = 69,463 FTZ (N= 76 CN2 = 81 te2 = 2.5 min USE te2 = 5.0 min (SHE WORRICSITOBT) Que = 9.2 CFS (SEE HIDROCUS MODER) Q₁ → P Q₁ = 36.4 CFS Q 7 TOTAL Q12 -

70 1-30-24 ST. EDS DATIWASE ANDZ BNS PROPOSED CONSTITIONS ; A3 = 125,538 Fi² (UPMA TO DETENTION) A3 (1MP) = 85,825 Fr² (N=58 W3=91 A3(Pm) = 39,713 42 CN = 76 te= 5.1 min USE te3 = 5.0 min (SEE te WORKSHOET) Q = 15.5 CFS A4 = ZI, 948 FF2 (UPANZ BAPASS TO BRUSH MA) A4(1ng= 12,254 Fiz CN= 98 CN4 = 88 A4 (AR) = 9,694 FTZ CN = 76 USE TE= 5.0 MIN (UMM SHORT THUE ANTH) QAH = Zib CFS A5 = 114, 822 FZ (WARNE BUPASS) A5(1mp) = 9,993 Fiz CN = 99 W= 78 A5(An2) = 104,829 Fr2 (N = 76 tes= th = 6.0 min QAF = 10.3 CPS

4/19 1-30-24 ST LOS DRAWAUE AND BND PROP. CUND CNID. ... A6 = Z4,503 FT (Land TO DOTENTION) A6/100 = 22,552 FTZ (N= 9%) A6(Pur)= 1,951 FTZ CN=76 USE the = 5.0 min (Sim TO the) $Q_6 = 3.2 \text{ CFS}$ $\overline{CN}_6 = 9.6$ Az = 67, 434 Fr2 (Lower BY PHJS) Az = 88 FTZ (N=98 A7 1RAS = 67, 346 FTZ CN = 76 W = 76 te= 5.0 mins (SHOTE PTAT) Q7 = 5.9 crs Rate storm THROUGH A BURSS MANHELE (#1) P#14 AL FLOW TO WATER QUALITY MHH1 P#10 DETENTION HIGH ROW BYASS IN EXTREME FLOW TO NOT FLUSH OUT W. Q. UNIT REF: ITIONCAD MODEZ-

57. 60'S DAWAY MAR. 30. 1-50-24
$$\frac{1}{19}$$

CHE212 IMPARIUS SAFFELS
 $\Rightarrow |mm^{-1} - Los | (21 BOUSH HILL)$
 $an - 51B | mP 40a = 105, 218 F^{2} = 45.0% mP %$
 $\overline{7072} - Alca = 234,004 FZ = 45.0%$
 $* VIRINNE GAMATED (284 #03-23)$
 $\cdot EREDIRE IMPRADUS = \frac{19,393}{234,004}FZ = 8.3\%$
 $\cdot ERETINE IMPRADUS = \frac{19,279}{55,202}FZ = 21.5\% improved for 100 mRR %$
 $\cdot ERETINE IMP = \frac{18,279}{55,202}FZ = 21.5\% improved for 2%$
 $\cdot ERETINE IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED
 $\cdot ERETINE IMPROVIDUS = 0\% = \frac{0}{85,203}FZ$
 $0\% < 10.0\% (mmx, H22MIIRD)$
 $+ OL : IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED
 $+ OL : IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $ERETINE IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $ERETINE IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $ERETINE IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $+ OL : IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $ERETINE IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $ERETINE IMPROVIDUS & ERETATIVE IMPROVIDUS % STISFIED.$
 $ERET OF 0 (A TO A7) MOREORDER S.
 $\cdot ERETINE OF (A TO A7) MOREORDER S.$
 $\cdot ERETURE VARENTEE (AB TO A11) SUBSETS$$$$

A2301 BO SHEETS FYE EASE* • 5 SOUARES A2302 100 SHEETS FYE EASE* • 5 SOUARES A2302 100 SHEETS FYE EASE* • 5 SOUARES

ST. ED'S DATINATOR ANAL.	BND	1-30-24	入し
PIPE SIZING (NTO,			
· CHECK P#15(CAP) VS. Q(P#15) = Q P#15(CAP) = 20.8 CFS >15.3) (siloam auto	T) = 15.305	
· CHECIL P#14 (OK - ANAZYZO IN HYDROCA	+D MCDOL)	: OK	
· CHECK P#13(CAP) US, Q(#13) = Q(A6 P#13(CAP) = 4,2 CFS > 3,21 CFS)= 3.21 (55	: 04	
· CHELL PHIZ (OIL - ANALYZED W HYDROE	(Lalam Can		
• СМССИ 7#11 (CNP) VS. Q(PHII) = Q(TO PHII (CAP) = 8.2 CFS > 5.87 CFS	Gnubaits) =	5.97 CFS + OK	
· CHECK PHIO (OIL - ANTLYZED IN HYDRO.	LAS MODE)	i ok	
• CHARLE PH9(CAP) VS. $Q(PH9) = Q(A3)$ PH9(CAP) = 18.5 CFS > 15.5 CFS	()= 15.5 crs	: OK	
· CHICK T#8 (CAP) VS, Q(148)=Q(43) P#8/CAP)= 17,6 OFS > 15,5 CFS	= 15.5 LFS	: OK	
• CHERR $P \# 7 (CAP) VS. Q (P \# 7) = Q(+8) = P \# 7 (CAP) = 6.7 LFS > 1.1 LFS$	1.1 CFS	:, <u>OIL</u>	
• CHECIL P#6 (CAP) VS. Q(P#6) = Q(+8) = P#6 (CAP) = Z.O CFS > 1.1CFS	= 1.1 CFS		
• CHECK $P \pm 5(CAP)$ vs $Q(P \pm 5) = Q(A9 + A)$ $Q(P \pm 5) = (3.81 + 5.67 + 0.91) = 10.$ $P \pm 5(CAP) = 11.9$ CFS > 10.39 CFS	10 + A 11) 39 CFS	i OL	
• CITECK $T # A (CAP) VS, Q (P#A) = Q (AQ(P#A) = (5.67 + 0.91) = 6.58 CFSP#A(CAP) = 10.8 CFS > 6.58 CFS$	+10+411)	: OK	

42.381 50 SHEET'S EVE EASEP - 5 SOUARES 42.382 100 SHEET'S EVE EASEP - 5 SOUARES 42.393 200 SHEET'S EVE EASEP - 5 SOUARES

8/1 1-30-24 ST. 60'S DATINAUE ANTL. Bra PIRE SIZING CUM ... · CHECK P#3 (CAP) VS. Q(P#3) = Q(A11) = 0,91 45 .; ok P#3(CAP) = 6.0 CFS > 0.91 CFS · CHECK P#2(CAP) VS, Q(P#2)= Q(A11)= 0.91 CFS i. OK P#2(CAP) = 6.4 LFS > ().91 CFS · PHI IS NOT A STORM DATIN & ONM CONVER GROUMOWFIER FROM AN EXISTING CURTAIN DRAIN (NO NOW TO SIZE) Vational[®]Brand SIZE PHIS CHANNEL WILET · TYPE "(" WILET ROP CT DOT SMINAGE MANUAL P#15 Q(P#15)= 15.3 CFS, 24" MA (Pur how) TABLE 8-6.1 16 CFS & ZA" USE La= 17 (MIN) VSE La = 25' FUL FLOW V= 6.61 FPS -RIP-MP TABLE 8.5 V= U- 8 APS MUDIFIEN * 8-10 INT. 10 - 14 STD. * USE NEXT SIZE WP - INTERIO RIP- RAP. ~ C.AZ < d_ < 0.67 311 18" THICK 2 INTERMOD. RIP-MP - GEOTEX TILE - 6" GRANVER FILL 1= 6->1-3-2= 6-21

57 60'5	Drawnie fan.	END.	1-30-24	9/10
WATER QUILIM ROU	V: compare wa	#1 (405 F	BARALUSA	
	RATIE.	WATER QUAL	ing thour	7
REFERENCE: . CT	GUIDELINGS FOR S	EL (2002		
For	2 WQ # (~ TWN (
R= C	0.05 ± 0.009	T)		
I = A	3+A6 - 108, 377	72.2%		
R = c	0.05 + 0.009 (72)	2)= 0.7	-0	
WQV	$= \frac{1^{n}(R)(A)}{R} = ($	i)(.70)(-	3,44)	
W/DV .	12 - 0.20 te-fi	P	= 1" REW Fizz	
1 1 = -	1,000			
2-	10 + 5P + 10Q - 10(WQV(12) (122)	$Q^{2} + 1.25$	QP) 1/2	
	$A = \frac{0.20}{3}$	44	0,70	
CN =	(1,000) (1,10)	7+1.25(.7)	(1) 1/2	
CN=	97 96.9	62		
· CITTLE In	ON TABLE 4-1	72-55		
CN = 9	$7 \Rightarrow I_a = 0.0$	062		

42-381 SO SHEET'S EVE-ASS⁰ - 5 SOUARES 42-382 100 SHEET'S EVE-ASS⁰ - 5 SOUARES 42-382 200 SHEET'S EVE-EASS⁰ - 5 SOUARES

57 60'S DAMAGE MURCHESS BUS 1-38-24 (1)
MQ. STEWE CUTO.

$$F=1'' \quad = C.062 = 0.062$$

$$t_{c} = 6 \text{ min} = 0.1 \text{ Hes}$$
CHICLE EXHIBIT A-TIT FROM THE (2)
0.1 MPS = I = 0.062
QU = 650 CSM (1)
WAF = 2.0 (A)(Q)
CSA MILES (3, AA AC) & A3500 F² 1 SAM
A = 5.375 XIO⁻³ SAM
A = 5.375 XIO⁻³ SAM
A = 5.375 XIO⁻³ SAM
(0.7) = 2.45 CFS
(650) (6.375 XIO⁻³) (0.7) = 2.45 CFS
(UQF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS
UQF = 2.45 CFS < 5.87 CFS MX ROW TO
WAF = 2.45 CFS
WAF = 0.0000 FF = 0.0000 FF = 2.45 CFS
WAF = 0.0000 FF = 0.0000 FF = 0.0000 FF = 0.0000 FF = 0

DRAWACE WAZ.

Saint Edward The Confessor 21 Brush Hill Road, New Fairfield, CT

1/30/2024

1/10

1-30-24

-	Shed I.D.	area (s.f.)	imp area	per. area	weighted "C"	25 yr - Q (cfs)
	A8	8,574	7,608	966	0.83	1.10
	A9	30,526	26,010	4,516	0.81	3.81
	A10	47,185	37,796	9,389	0.78	5.67
	A11	17,266	1,280	15,986	0.34	0.91

Manning's Pipe Flow Worksheet Saint Edward The Confessor 21 Brush Hill Road, New Farifield, CT

1/30/2024

12

10

1-30-24

Pipe I.D.	diam. (in.)	slope (%)	n (value)	Velocity (fps)	Capacity (cfs)
					T and (CIS)
P#1	4	~10%	N/A - this is	s a curtain drain	outlet
P#2	12	2.3	0.011	8.15	64
P#3	12	2.0	0.011	7.60	6.0
P#4	15	2.0	0.011	8.82	10.8
P#5	15	2.4	0.011	9.66	11.0
P#6	8	2.0	0.011	5.80	2.0
P#7	12	2.5	0.011	8.50	2.0 6 7
P#8	18	2.0	0.011	9.96	17.6
P#9	18	2.2	0.011	10.45	18.5
P#10	12	3.3	analyzed in	HydroCAD mod	lel
P#11	12	3.8	0.011	10.48	87
P#12	12	1.0	analyzed in	HvdroCAD mod	0.2 101
P#13	12	1.0	0.011	5 38	101
P#14	24	3.3	analyzed in	HvdroCAD mod	4. 2
P#15	24	0.6	0.011	6.61	20.8

			DALIAN		14-1	RAN		2. 2/ 13/
	51	613	DIMINA	OF A	VIL,	DNO	/	30 24 [1]
Time of	Concentr	ation Worksheet #1						1/30/2024
Saint Ec	lward The	Confessor						
21 Brus	h Hill Roa	id, New Fairfield, CT						
Tc#	Reach	Description	elev up	elev dn.	length (ft.)	slope (%)	V (fps)	T (sec)
Tc#1	a-b	pasture/grass	792	746	420	11.0	2.3	182.6
	b-c	gutter	746	738	263	3.0	3.5	75.1
	c-d	pipe flow (use $v = 3$ fps)	n/a	n/a	32	n/a	3.0	10.7
	d-e	stream	733.5	688	424	10.7	5.0	84.8
Total							sec.	353.2
							min.	5.9
Tc#	Reach	Description	elev un	elev dn	length (ft.)	slope (%)	V (fns)	T (sec)
	1.000011	Description	ciev up	ciev uii.	iongui (it.)	510pe (70)	• (1p5)	1 (300)
Tc#2	a-b	gutter	741	734	313	22	3.0	104 3
	b-d	stream	734	688	308	14.9	7.0	44.0
Total							sec.	148.3
							min	2.5
								2.0
Tc#	Reach	Description	elev up	elev dn.	length (ft.)	slope (%)	V (fps)	T (sec)
5								
Tc#3	a-b	pasture/grass	784	752	315	10.2	2.2	143.2
	b-c	pavement	751.5	746	56	9.8	6.0	9.3
	c-d	pipe flow (use $v = 3$ fps)	n/a	n/a	461	n/a	3.0	153.7
Total							sec.	306.2
							min.	5.1

Storm sewer or road gutter flow

Travel time through the storm sewer or road gutter system to the main open channel is the sum of travel times in each individual component of the system between the uppermost inlet and the outlet. In most cases average velocities can be used without a significant loss of accuracy. During major storm events, the sewer system may be fully taxed and additional overland flow may occur, generally at a significantly lower velocity than the flow in the storm sewers. By using average conduit sizes and an average slope (excluding any vertical drops in the system), the average velocity can be estimated using Manning's formula.

Since the hydraulic radius of a pipe flowing half full is the same as when flowing full, the respective velocities are equal. Travel time may

Storm sewer or road gutter flow

Travel time through the storm sewer or road gutter system to the main open channel is the sum of travel times in each individual component of the system between the uppermost inlet and the outlet. In most cases average velocities can be used without a significant loss of accuracy. During major storm events, the sewer system may be fully taxed and additional overland flow may occur, generally at a significantly lower velocity than the flow in the storm sewers. By using average conduit sizes and an average slope (excluding any vertical drops in the system), the average velocity can be estimated using Manning's formula.

Since the hydraulic radius of a pipe flowing half full is the same as when flowing full, the respective velocities are equal. Travel time may

5

10

1

2

.5

20

Storm sewer or road gutter flow

. 3

1

Travel time through the storm sewer or road gutter system to the main open channel is the sum of travel times in each individual component of the system between the uppermost inlet and the outlet. In most cases average velocities can be used without a significant loss of accuracy. During major storm events, the sewer system may be fully taxed and additional overland flow may occur, generally at a significantly lower velocity than the flow in the storm sewers. By using average conduit sizes and an average slope (excluding any vertical drops in the system), the average velocity can be estimated using Manning's formula.

Since the hydraulic radius of a pipe flowing half full is the same as when flowing full, the respective velocities are equal. Travel time may

1-30-24

Chapter 4

Graphical Peak Discharge Method

This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed from hydrograph analyses using TR-20, "Computer Program for Project Formulation—Hydrology" (SCS 1983). The peak discharge equation used is:

$$q_{\rm p} = q_{\rm u} A_{\rm m} Q F_{\rm p} \qquad [\rm eq. \ 4-1]$$

where:

 $q_p = peak discharge (cfs)$

 $q_u =$ unit peak discharge (csm/in)

 $A_m = drainage area (mi²)$

Q = runoff(in)

F_p= pond and swamp adjustment factor

The input requirements for the Graphical method are as follows: (1) T_c (hr), (2) drainage area (nii²), (3) appropriate rainfall distribution (I, IA, II, or III), (4) 24-hour rainfall (in), and (5) CN. If pond and swamp areas are spread throughout the watershed and are not considered in the T_c computation, an adjustment for pond and swamp areas is also needed.

Peak discharge computation

For a selected rainfall frequency, the 24-hour rainfall (P) is obtained from appendix B or more detailed local precipitation maps. CN and total runoff (Q) for the watershed are computed according to the methods outlined in chapter 2. The CN is used to determine the initial abstraction (I_a) from table 4-1. I_a / P is then computed.

If the computed I_a/P ratio is outside the range in exhibit 4 (4-I, 4-IA, 4-II, and 4-III) for the rainfall distribution of interest, then the limiting value should be used. If the ratio falls between the limiting values, use linear interpolation. Figure 4-1 illustrates the sensitivity of I_a/P to CN and P.

Peak discharge per square mile per inch of runoff (q_u) is obtained from exhibit 4-I, 4-IA, 4-II, or 4-III by using T_c (chapter 3), rainfall distribution type, and I_a/P ratio. The pond and swamp adjustment factor is obtained from table 4-2 (rounded to the nearest table value). Use worksheet 4 in appendix D to aid in computing the peak discharge using the Graphical method.

Table 4-1	I _a values for runoff curve numbers
the state of the second second	

Curve	Ia	Curve	Ia
number	(in)	number	(in)
40	3.000	70	0.857
41	2.878	71	0.817
42 2.762		72 0.778	
43	2.651	73	0 740
44	2.545	74	0 703
45	2.444	75	0.667
46	2.348	76	0.632
47	2.255	77	0.597
48	2.167	78	0.564
49	2.082	79	0.532
50	2.000	80	0.500
51	1.922	81	0 469
52	1.846	82	0.439
53	1.774	83	0 410
54	1.704	84	0.381
55	1.636	85	0.353
56	1.571	86	0.326
57	1.509	87	0.299
58	1.448	88	0.273
59	1.390	89	0.247
60	1.333	90	0.222
61	1.279	91	0.198
62	1.226	92	0.174
63	1.175	93	0.151
64 1.125		94	0.128
65	1.077	95	0.105
66 1.030		96 0.083	
67 0.985		97	
68	0.941	98	0.041
69	0.899		

EDIS ST.

DATIVALE ANTZ.

1-30-24 BND

SA/

9

Chapter 4

Graphical Peak Dischage Method

Technical Release 55 Urban Hydrology for Small Watersheds

 $\label{eq:exhibit 4-III} \mbox{ Unit peal discharge (q_u) for NRCS (SCS) type III rainfall distribution}$

Time of concentration (T_c) , (hours)

DAVINALE ANOL

Ready to Purchase?

tos

ST.

It's quick and easy to connect to a representative.

Find a Rep

Product Specifications

Barracuda Max Model (Barracuda Hydrodynamic Separator) Barracuda Max Model Manhole Diameter NJDEP (50% removal) OK-110 (80% removal) 53 36" (900 mm) 0.85 CFS (24.1 L/s) 0.85 CFS (24.1 L/s) 54 48" (1200 mm) 1.52 CFS (43.0 L/s) 1.52 CFS (43.0 L/s) 56 72" (1800 mm) 3.40 CFS (96.3 L/s) 3.42 CFS (96.8 L/s) 58 (*) 96" (2400 mm) 6.08 CFS (172.2 L/s) 6.08 CFS (172.2 L/s)

Get new product info and more in advance.

1-30-24

BN